损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...='sgd') 你可以传递一个现有的损失函数名,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels
Keras 中的自定义损失函数可以以我们想要的方式提高机器学习模型的性能,并且对于更有效地解决特定问题非常有用。例如,假设我们正在构建一个股票投资组合优化模型。...在这种情况下,设计一个定制损失函数将有助于实现对在错误方向上预测价格变动的巨大惩罚。 我们可以通过编写一个返回标量并接受两个参数(即真值和预测值)的函数,在 Keras 中创建一个自定义损失函数。...实现自定义损失函数 ---- 现在让我们为我们的 Keras 模型实现一个自定义的损失函数。首先,我们需要定义我们的 Keras 模型。...注意,我们将实际值和预测值的差除以 10,这是损失函数的自定义部分。在缺省损失函数中,实际值和预测值的差值不除以 10。 记住,这完全取决于你的特定用例需要编写什么样的自定义损失函数。...你可以查看下图中的模型训练的结果: epoch=100 的 Keras 模型训练 结语 ---- 在本文中,我们了解了什么是自定义损失函数,以及如何在 Keras 模型中定义一个损失函数。
上一篇介绍了回归任务的常用损失函数,这一次介绍分类任务的常用损失函数 深度学习中的损失函数 一.分类任务 与回归任务不同,分类任务是指标签信息是一个离散值,其表示的是样本对应的类别,一般使用...one-hot的中文释义为独热,热 的位置对应于向量中的1,所以容易理解独热的意思是指向量中只有一个位置为1,而其他位置都为0。...1.交叉熵损失 作为信息论基本概念之一,熵被用来衡量一个系统内信息的复杂度。...上熵的均值 output = tf.reduce_mean(output) 2.铰链损失 Hinge loss最初在SVM中提出,通常用于最大化分类间隔,铰链损失专用于二分类问题,核心思想是着重关注尚未分类的样本...,对于已经能正确分类的样本即预测标签已经是正负1的样本不做惩罚,其loss为0,对于介于-1~1的预测标签才计算损失。
本文工作总结了常用的的 14 个损失函数并对它们的优缺点进行分析,这些损失函数已被证明在不同领域提供了最先进的结果。...▲ RMSLE Loss与Predictions的性能图 3.10 Normalized Root Mean Squared Error (NRMSE) 归一化均方根误差(NRMSE)RMSE 有助于不同尺度模型之间的比较...总结展望 损失函数在确定给定目标的良好拟合模型中起着关键作用。对于时间序列预测等复杂目标,不可能确定通用损失函数。有很多因素,如异常值、数据分布的偏差、ML 模型要求、计算要求和性能要求。...没有适用于所有类型数据的单一损失函数。在主要关注模型架构和数据类型的学术环境中,损失函数可以通过用于训练的数据集属性(如分布、边界等)来确定。...本文总结了用于时间序列预测的 14 个著名损失函数,并开发了一种易于处理的损失函数形式,用于改进和更准确的优化。
1、经典损失函数:分类问题和回归问题是监督学习的两大种类。这一节将分别介绍分类问题和回归问题中使用到的经典损失函数。分类问题希望解决的是将不同的样本分到事先定义到的经典损失函数。...交叉熵刻画了两个概率分布之间的距离,它是分类问题中试用版比较广的一种损失函数。交叉熵是一个信息论中的概念,它原本是用来估计平均编码长度的。...2、自定义损失函数:tensorflow不仅支持经典的损失函数。还可以优化任意的自定义损失函数。下面介绍如何通过自定义损失函数的方法,使得神经网络优化的结果更加接近实际问题的需求。...为了最大化预期利润,需要将损失函数和利润直接联系起来。注意损失函数定义的是损失,所以要将利润最大化,定义的损失函数应该和客户啊成本或者代价。...tf.greater的输入时两个张量,此函数会比较这两个输入张量中每一个元素的大小,并返回比较结果。
总第121篇 前言 在机器学习中,同一个数据集可能训练出多个模型即多个函数(如下图所示,同样的数据集训练出三种不同的函数),那么我们在众多函数中该选择哪个函数呢?...2.平方损失函数 平方损失就是线性回归中的残差平方和,常用在回归模型中,表示预测值(回归值)与实际值之间的距离的平方和。...3.绝对损失函数 绝对损失与平方损失类似,也主要用在回归模型中,表示预测值与实际值之间的距离。...5.对数损失函数 对数损失函数主要用在逻辑回归中,在逻辑回归模型中其实就是预测某个值分别属于正负样本的概率,而且我们希望预测为正样本的概率越高越好。...6.Hinge损失函数 Hinge损失主要用在SVM算法中,具体公式如下: 形状比较像合页,又称合页损失函数 Yi表示样本真实分类,Yi=-1表示负样本,Yi=1表示正样本,Yi~表示预测的点到分离超平面的距离
在《神经网络中常见的激活函数》一文中对激活函数进行了回顾,下图是激活函数的一个子集—— 而在神经网络领域中的另一类重要的函数就是损失函数,那么,什么是损失函数呢?...在机器学习中,损失函数是代价函数的一部分,而代价函数是目标函数的一种类型。在应用中,损失函数通常作为学习准则与优化问题相联系,即通过最小化损失函数求解和评估模型。...Hinge Loss 损失函数 Hinge loss损失函数通常适用于二分类的场景中,可以用来解决间隔最大化的问题,常应用于著名的SVM算法中。...在孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系,形式上并不一定是两个Net...在损失函数中引入 δ 项,使 MSE 向 MAE 的转变趋于平滑。
MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE; RMSLE...: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再求RMSE,这个过程就是RMSLE。...线性回归用MSE作为损失函数 y_preditc=reg.predict(x_test) #reg是训练好的模型 mse_test=np.sum((y_preditc-y_test)**2)/len(y_test...5.RMSLE(Root Mean Squared Logarithmic Error) 假如真实值为1000,如果预测值是600,那么RMSE=400, RMSLE=0.510 假如真实值为1000,...如果预测结果为1400, 那么RMSE=400, RMSLE=0.336 可以看出来在均方根误差相同的情况下,预测值比真实值小这种情况的错误比较大,即对于预测值小这种情况惩罚较大。
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。 损失函数分为经验风险损失函数和结构风险损失函数。...指数损失函数(exponential loss) 指数损失函数的标准形式如下: ? 特点: (1)对离群点、噪声非常敏感。经常用在AdaBoost算法中。 6....交叉熵损失函数 (Cross-entropy loss function) 交叉熵损失函数的标准形式如下: ? 注意公式中 ? 表示样本, ? 表示实际的标签, ?...表示预测的输出, ? 表示样本总数量。 特点: (1)本质上也是一种对数似然函数,可用于二分类和多分类任务中。...为神经元的实际输出( ? )。同样可以看看它的导数: ? 另外, ? 所以有: ? ? 所以参数更新公式为: ? 可以看到参数更新公式中没有 ? 这一项,权重的更新受 ?
这是一个 Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请更新到新版)。你只需要实现三个方法即可: build(input_shape): 这是你定义权重的地方。...2.自定义评价函数 自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。...rmsprop', loss='binary_crossentropy', metrics=['accuracy', mean_pred]) 3.自定义损失函数...自定义损失函数也应该在编译的时候(compile)传递进去。...(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制: from keras.models import load_model
前言 本篇博客的目的是根据业务目标,为大家提供关于在构建神经网络时,如何根据需求选择合适的最终层激活函数和损失函数的指导和建议。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对示例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Softmax——这将为每个输出产生介于0和1之间的值,这些值的总和为1。 所以这可以被推断为概率分布。 损失函数 交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对于某个实例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...总结 以下表格总结了上述信息,以便您能够快速找到适用于您用例的最终层激活函数和损失函数。 参考: 人工智能学习指南
损失函数在机器学习模型的训练中的作用至关重要,包括以下内容: 性能测量:损失函数通过量化预测与实际结果之间的差异,提供了一个明确的指标来评估模型的性能。...影响模型行为:某些损失函数可能会影响模型的行为,例如对数据异常值更加稳健或优先处理特定类型的错误。 让我们在后面的部分中探讨特定损失函数的作用,并建立对损失函数的详细理解。 什么是损失函数?...损失函数的类型 机器学习中的损失函数可以根据其适用的机器学习任务进行分类。...这使得损失函数的计算效率成为损失函数选择过程中需要考虑的因素。 考虑因素 描述 学习问题的类型 分类与回归; 二元分类与多类分类。...Loss 是 否 中 Hinge Loss 是 否 低 Huber Loss 否 是 中 Log Loss 是 否 中 实现损失函数 实现常见损失函数的示例 MAE的Python实现 # Python
一般来说,我们在进行机器学习任务时,使用的每一个算法都有一个目标函数,算法便是对这个目标函数进行优化,特别是在分类或者回归任务中,便是使用损失函数(Loss Function)作为其目标函数...损失函数是用来评价模型的预测值Y^=f(X)与真实值Y的不一致程度,它是一个非负实值函数。通常使用L(Y,f(x))来表示,损失函数越小,模型的性能就越好。...那么总的损失函数为:(X,Y)=(xi,yi) L=∑i=1Nℓ(yi,yi^) 常见的损失函数ℓ(yi,yi^)有一下几种: Zero-one Loss Zero-one Loss:即0-1损失,它是一种较为简单的损失函数...Hinge Loss Hinge,损失可以用来解决间隔最大化问题,如在SVM中解决几何间隔最大化问题,其定义如下: ?...因此log类型的损失函数也是一种常见的损失函数,如在LR(Logistic Regression, 逻辑回归)中使用交叉熵(Cross Entropy)作为其损失函数。即: ? 规定: ?
一、分类算法中的损失函数 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J(w)=∑iL(mi(w))+λR(w) J\left ( \mathbf{w} \right...,主要的形式有: 0-1损失 Log损失 Hinge损失 指数损失 感知损失 1、0-1损失函数 在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。...2、Log损失函数 2.1、Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: log(1+exp(−m)) log\left ( 1+exp\left ( -m \right...3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) max\left ( 0,1-m \right )
概述 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J...,主要的形式有: 0-1损失 Log损失 Hinge损失 指数损失 感知损失 2. 0-1损失函数 在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。 3. Log损失函数 3.1....Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: l...Log损失与0-1损失的关系可见下图。 4. Hinge损失函数 4.1.
前言:损失函数是机器学习里最基础也是最为关键的一个要素,通过对损失函数的定义、优化,就可以衍生到我们现在常用的LR等算法中 本文是根据个人自己看的《统计学方法》《斯坦福机器学习课程》及日常工作对其进行的一些总结...,所以就定义了一种衡量模型好坏的方式,即损失函数(用来表现预测与实际数据的差距程度)。...:10 从损失函数求和中,就能评估出公式1能够更好得预测门店销售。...logP(Y|X) 损失函数越小,模型就越好。 总结: 损失函数可以很好得反映模型与实际数据差距的工具,理解损失函数能够更好得对后续优化工具(梯度下降等)进行分析与理解。...很多时候遇到复杂的问题,其实最难的一关是如何写出损失函数。这个以后举例 下一篇,我们来说一下如何用梯度下降法对每个公式中的系数进行调整
一、分类算法中的损失函数 image.png 1、0-1损失函数 image.png 2、Log损失函数 2.1、Log损失 image.png 2.2、Logistic回归算法的损失函数 image.png...2.3、两者的等价 image.png 3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) 运用Hinge...3.2、SVM的损失函数 image.png 3.3、两者的等价 image.png 4、指数损失 4.1、指数损失 指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下: exp(−m) 运用指数损失的典型分类器是...5.2、感知机算法的损失函数 感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为: image.png 5.3、两者的等价 image.png image.png Hinge...损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。
重要的是要将它们分开,并将它们作为新的特征包含进来,这样我们的模型就能做出更好的预测。 划分类别 在我们的分析中,我们使用以下函数将每个类别的名称划分为主类别、子类别1、子类别2。...我们使用以下函数执行此操作: def fill_nan(dataset): ''' 函数填充各列中的NaN值 ''' dataset["item_description"].fillna...SVR: 支持向量回归(SVR)是指用不超过ε的值来预测偏离实际数据的函数。我们使用SGDRegressor训练一个SVR,“epsilon_unsensitive”作为损失,alphas作为超参数。...根据我们的测试数据,该模型产生了α=0.0001的RMSLE为0.632。在我们的例子中,简单的线性回归比支持向量机的性能要好得多。...因此,在四个模型中,创建了两个模型组,即一个来自模型1和模型2,实现后RMSLE 0.433,另一个来自模型3和4,RMSLE为0.429 集成模型1和2的代码如下所示: #https://machinelearningmastery.com
点关注,不迷路,定期更新干货算法笔记~ 表示学习的目的是将原始数据转换成更好的表达,以提升下游任务的效果。在表示学习中,损失函数的设计一直是被研究的热点。...这篇文章总结了表示学习中的7大损失函数的发展历程,以及它们演进过程中的设计思路,主要包括contrastive loss、triplet loss、n-pair loss、infoNce loss、focal...损失函数可以表示为: Contrastive Loss是后面很多表示学习损失函数的基础,通过这种对比的方式,让模型生成的表示满足相似样本距离近,不同样本距离远的条件,实现更高质量的表示生成。...InfoNCE loss可以表示为如下形式,其中r代表temperature,采用内积的形式度量两个样本生成向量的距离,InfoNCE loss也是近两年比较火的对比学习中最常用的损失函数之一: 相比...总结 损失函数是影响表示学习效果的关键因素之一,本文介绍了表示学习中7大损失函数的发展历程,核心思路都是通过对比的方式约束模型生成的表示满足相似样本距离近,不同样本距离远的原则。 END
对于不平衡的训练集非常有效。 在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。...所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。...必须是一个长度为 “nbatch” 的 的 Tensor 6 BCEWithLogitsLoss BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中....') 对于 mini-batch(小批量) 中每个实例的损失函数如下: 参数: margin:默认值0 8 HingeEmbeddingLoss torch.nn.HingeEmbeddingLoss...(margin=1.0, reduction='mean') 对于 mini-batch(小批量) 中每个实例的损失函数如下: 参数: margin:默认值1 9 多标签分类损失 MultiLabelMarginLoss
领取专属 10元无门槛券
手把手带您无忧上云