VEC_DIM = 10
DNN_LAYERS = [64, 128, 64]
DROPOUT_RATE = 0.5
base, test = loadData()
# 所有的特征各个类别值个数之和...FEAT_CATE_NUM = base.shape[1] - 1
K = tf.keras.backend
class CrossLayer(keras.layers.Layer):
def..., K.pow(self.V, 2))
return 0.5 * K.mean(a - b, 1, keepdims=True)
def run():
# 返回id化特征 和...inputs_id = keras.Input((cate_num,))
emb = keras.layers.Embedding(FEAT_CATE_NUM, VEC_DIM, input_length...)
deep = keras.layers.Dropout(DROPOUT_RATE)(deep)
# FM 部分
# 将emb切分成各个field的小emb