首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第16章 使用RNN和注意力机制进行自然语言处理

自然语言处理的常用方法是循环神经网络。所以接下来会从 character RNN 开始(预测句子中出现的下一个角色),继续介绍RNN,这可以让我们生成一些原生文本,在过程中,我们会学习如何在长序列上创建TensorFlow Dataset。先使用的是无状态RNN(每次迭代中学习文本中的随机部分),然后创建一个有状态RNN(保留训练迭代之间的隐藏态,可以从断点继续,用这种方法学习长规律)。然后,我们会搭建一个RNN,来做情感分析(例如,读取影评,提取评价者对电影的感情),这次是将句子当做词的序列来处理。然后会介绍用RNN如何搭建编码器-解码器架构,来做神经网络机器翻译(NMT)。我们会使用TensorFlow Addons项目中的 seq2seq API 。

02

Encoder-Decoder with Atrous SeparableConvolution for Semantic Image Segmentation

深度神经网络采用空间金字塔池化模块或编解码器结构进行语义分割。前者通过多速率、多有效视场的过滤或池化操作,能够编码多尺度背景信息;后者通过逐步恢复空间信息,能够捕获更清晰的物体边界。在本研究中,我们建议结合这两种方法的优点。具体来说,我们提出的模型DeepLabv3+扩展了DeepLabv3,通过添加一个简单但有效的解码器模块来细化分割结果,特别是沿着对象边界。我们进一步探索了Xception模型,并将深度可分离卷积应用于Atrous空间金字塔池和解码器模块,从而获得更快、更强的编码器-解码器网络。我们在PASCAL VOC 2012和Cityscapes数据集上验证了该模型的有效性,在没有任何后处理的情况下,测试集的性能分别达到了89.0%和82.1%。

02

SegNetr来啦 | 超越UNeXit/U-Net/U-Net++/SegNet,精度更高模型更小的UNet家族

在本文中,作者重新思考了上述问题,并构建了一个轻量级的医学图像分割网络,称为SegNetr。具体来说,作者介绍了一种新的SegNetr块,它可以在任何阶段动态执行局部全局交互,并且只有线性复杂性。同时,作者设计了一种通用的 Information Retention Skip Connection(IRSC),以保留编码器特征的空间位置信息,并实现与解码器特征的精确融合。 作者在4个主流医学图像分割数据集上验证了SegNetr的有效性,与普通U-Net相比,参数和GFLOP分别减少了59%和76%,同时实现了与最先进方法相当的分割性能。值得注意的是,本文提出的组件也可以应用于其他U-shaped网络,以提高其分割性能。

03

ICCV2023 | Masked Diffusion Transformer: 增强扩散模型对上下文关系的理解

在这项工作中,我们首先观察到DPMs通常难以学习图像中物体部分之间的关联关系,导致训练过程缓慢。为了解决这个问题,提出了一种有效的掩码扩散变换器(Masked Diffusion Transformer,MDT),以提高DPMs的训练效率。MDT引入了一个蒙面潜在建模方案,专门为基于Transformer的DPMs设计,以明确增强上下文学习能力并改进图像语义之间的关联关系学习。MDT在潜在空间中进行扩散过程以节省计算成本。它对某些图像标记进行掩码,并设计了一个不对称的掩码扩散变换器(AMDT),以一种扩散生成的方式预测被掩码的标记。MDT可以从其上下文不完整的输入中重建图像的完整信息,学习图像语义之间的关联关系。

04
领券