首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言之处理大型数据集的策略

在实际的问题中,数据分析者面对的可能是有几十万条记录、几百个变量的数据集。处理这种大型的数据集需要消耗计算机比较大的内存空间,所以尽可能使用 64 位的操作系统和内存比较大的设备。...否则,数据分析可能要花太长时间甚至无法进行。此外,处理数据的有效策略可以在很大程度上提高分析效率。 1....data.table 包提供了一个数据框的高级版本,大大提高了数据处理的速度。该包尤其适合那些需要在内存中处理大型数据集(比如 1GB~100GB)的用户。...选取数据集的一个随机样本 对大型数据集的全部记录进行处理往往会降低分析的效率。在编写代码时,可以只抽取一部分记录对程序进行测试,以便优化代码并消除 bug。...需要说明的是,上面讨论的处理大型数据集的策略只适用于处理 GB 级的数据集。不论用哪种工具,处理 TB 和 PB 级的数据集都是一种挑战。

34720

keras中的数据集

通过这些数据集接口,开发者不需要考虑数据集格式上的不同,全部由keras统一处理,下面就来看看keras中集成的数据集。...注意 keras.datasets模块包含了从网络下载数据的功能,下载后的数据集保存于 ~/.keras/datasets/ 目录。因为这些数据集来源各有不同,有些需要访问外国网站才能访问。...IMDB电影点评数据 来自IMDB的25,000个电影评论的数据集,标记为正面评价和负面评价。数据集并不是直接包含单词字符串,而是已经过预处理,每个评论都被编码为一系列单词索引(整数)。...总结 从上面的代码可以看到,keras提供的接口非常简洁,仅仅调用各数据集的load_data()方法,开发者无需处理数据下载、数据保存、数据解析等等细节,可以极大的方便开发者将精力集中于业务开发。...目前keras集成的数据集还比较有限,以后也许会有更多的公共数据集集成过来。

1.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Java处理大型数据集,解决方案有哪些?

    在处理大型数据集时,Java有多种解决方案,以下是其中一些: 分布式计算框架:使用分布式计算框架(如Apache Hadoop和Apache Spark)可以轻松地并行处理大型数据集。...Java语言天生适合于分布式计算,因此具有优秀的分布式计算资源。 内存数据库:传统的基于磁盘的数据库在处理大型数据集时可能会变得很慢。...压缩算法:使用压缩算法可以将大型数据集压缩成更小的文件,在传输、存储或处理时减少资源消耗。 算法优化:在处理大型数据集时,可以使用一些基本的算法和优化技术来提高性能。...内存映射文件:内存映射文件是一种资源处理方式,可以将大型数据集的部分或全部映射到内存中以进行读取和写入操作,这种操作可以提高 IO 操作效率并且减少内存消耗。...以上是 Java 处理大型数据集的一些解决方案,每种解决方案都有适合的场景和使用范围。具体情况需要结合实际的业务需求来选择合适的方案。

    36210

    大型数据集的MySQL优化

    压缩InnoDB表 InnoDB的另一大优势就是它支持表压缩(有助于提高其原始性能和扩展性),它还具有双重效用:减少磁盘和内存间的数据传送;增加磁盘和内存中的压缩存储。...硬件优化 很久之后才能开始变更MySQL的设置,但如果在次优硬件上操作,则不会造成什么影响。 内存 写入时采用16到32GB的RAM应当是效果最佳的。...处理能力 MySQL(5.5版本)全面采用多线程处理,因此在操作系统支持的情况下,可实现多处理器操作。尽管出于扩展性的需求,很多DBAs能支持更多处理器,但在这一点上,两个双核CPU已能满足需求。...存储 存储的标准协议,是将其连接至数个spindle和RAID(独立磁盘冗余阵列)。新版2.5 SAS(串行连接SCSI接口)硬盘驱动器虽然很小,通常却比传统大型驱动器运行得更快。...由此看来,如果面对巨量内存,且只想清除其中20%的数据,可利用MySQL将其存入内存。

    1.2K60

    【小白学习Keras教程】四、Keras基于数字数据集建立基础的CNN模型

    「@Author:Runsen」 加载数据集 1.创建模型 2.卷积层 3. 激活层 4. 池化层 5. Dense(全连接层) 6....layer」:在一个小的感受野(即滤波器)中处理数据 「Pooling layer」:沿2维向下采样(通常为宽度和高度) 「Dense (fully connected) layer」:类似于MLP的隐藏层...import to_categorical 加载数据集 sklearn中的数字数据集 文档:http://scikit-learn.org/stable/auto_examples/datasets...import Sequential from keras import optimizers from keras.layers import Dense, Activation, Flatten,...Conv2D, MaxPooling2D 1.创建模型 创建模型与MLP(顺序)相同 model = Sequential() 2.卷积层 通常,二维卷积层用于图像处理 滤波器的大小(由“kernel

    55130

    基于Keras+CNN的MNIST数据集手写数字分类

    3.数据观察 3.1 使用keras库中的方法加载数据 本文使用keras.datasets库的mnist.py文件中的load_data方法加载数据。...第1个元素是训练集的数据,第2个元素是测试集的数据; 训练集的数据是1个元组,里面包括2个元素,第1个元素是特征矩阵,第2个元素是预测目标值; 测试集的数据是1个元组,里面包括2个元素,第1个元素是特征矩阵...train_y; 第5-7行代码将原始的特征矩阵做数据处理形成模型需要的数据; 第8行代码使用keras中的方法对数字的标签分类做One-Hot编码。...; 第2-4行代码将原始的特征矩阵做数据处理形成模型需要的数据; 第5行代码使用keras中的方法对数字的标签分类做One-Hot编码。...上面一段代码的运行结果如下: 第7-8行代码使用测试集的数据做模型评估,打印损失函数值和准确率; 第9-10行代码使用训练集的数据做模型评估,打印损失函数值和准确率。

    2.4K20

    基于tensorflow的图像处理(四) 数据集处理

    由于训练数据集通常无法全部写入内存中,从数据中读取数据时需要使用一个迭代器(iterator)按顺序进行读取,这点与队列的dequeue()操作和Reader的read()操作相似。...比如在自然语言处理的任务中,训练数据通常是以每行一条数据的形式存在文本文件中,这时可以用TextLineDataset来更方便地读取数据:import tensorflow as tf# 从文本创建数据集...对每一条数据进行处理后,map将处理后的数据包装成一个新的数据集返回,map函数非常灵活,可以用于对数据的任何预处理操作。...shuffle算法在内部使用一个缓冲区保存buffer_size条数据,每读入一条新数据时,从这个缓冲区中随机选择一条数据进行输出。缓冲区的大小越大,随机性能越好,但占用的内存也越多。...不同的是,以下例子在训练数据集之外,还另外读取了数据集,并对测试集和数据集进行了略微不同的预处理。

    2.4K20

    用Keras+TensorFlow,实现ImageNet数据集日常对象的识别

    博客Deep Learning Sandbox作者Greg Chu打算通过一篇文章,教你用Keras和TensorFlow,实现对ImageNet数据集中日常物体的识别。...以下是这个数据集包含的部分类别: 狗 熊 椅子 汽车 键盘 箱子 婴儿床 旗杆 iPod播放器 轮船 面包车 项链 降落伞 枕头 桌子 钱包 球拍 步枪 校车 萨克斯管 足球 袜子 舞台 火炉 火把 吸尘器...preprocess_input:使用训练数据集中的平均通道值对图像数据进行零值处理,即使得图像所有点的和为0。这是非常重要的步骤,如果跳过,将大大影响实际预测效果。这个步骤称为数据归一化。...model.predict:对我们的数据分批处理并返回预测值。...decode_predictions:采用与model.predict函数相同的编码标签,并从ImageNet ILSVRC集返回可读的标签。

    2K80

    【译文】MapReduce:大型集群上的简化数据处理

    【译文】MapReduce:大型集群上的简化数据处理 作者:Jeffrey Dean 和 Sanjay Ghemawat 摘要: MapReduce是一个编程模型,以及处理和生成大型数据集的一个相关实现...它将这些值合并以形成一组可能更小的值。通常每次reduce调用只生成0个或1个输出值。中间值靠一个迭代器提供给用户的reduce函数。这使我们能够处理大量太大以至于不能装入内存的值列表。...例如,一种实现可能适合一个小型的共享内存的机器,另外一种可能适合一个大型的NUMA多处理器,而另外一种可能适合一个更大的联网计算机集合。...如果中间数据太大以至于不能放在内存中,还需要使用一个外部的排序。...每台机器拥有两个支持超线程的2GHz的Intel Xeon处理器,4GB内存,两个160GB的IDE磁盘,和千兆以太网接入。

    77910

    WenetSpeech数据集的处理和使用

    WenetSpeech数据集 10000+小时的普通话语音数据集,使用地址:PPASR WenetSpeech数据集 包含了10000+小时的普通话语音数据集,所有数据均来自 YouTube 和 Podcast...TEST_NET 23 互联网 比赛测试 TEST_MEETING 15 会议 远场、对话、自发和会议数据集 本教程介绍如何使用该数据集训练语音识别模型,只是用强标签的数据,主要分三步。...下载并解压WenetSpeech数据集,在官网 填写表单之后,会收到邮件,执行邮件上面的三个命令就可以下载并解压数据集了,注意这要500G的磁盘空间。...然后制作数据集,下载原始的数据是没有裁剪的,我们需要根据JSON标注文件裁剪并标注音频文件。...--wenetspeech_json参数是指定WenetSpeech数据集的标注文件路径,具体根据读者下载的地址设置。

    2.2K10

    R语言基于Keras的小数据集深度学习图像分类

    让我们从数据开始吧。 下载数据 使用 Dogs vs. Cats数据集 。 这里有些例子: ? 该数据集包含25,000张狗和猫的图像(每类12,500张),543 MB 。...下载并解压缩后,您将创建一个包含三个子集的新数据集:每个类包含1,000个样本的训练集,每个类500个样本的验证集,以及每个类500个样本的测试集。...一个预训练的网络是一个先前在大型数据集上训练的已保存网络,通常是在大规模图像分类任务上。...因此,如果您的新数据集与训练原始模型的数据集有很大不同,那么最好只使用模型的前几层来进行特征提取,而不是使用整个卷积基础。...使用数据扩充 过度拟合是由于过多的样本需要学习,导致无法训练可以推广到新数据的模型。

    85030

    使用内存映射加快PyTorch数据集的读取

    本文将介绍如何使用内存映射文件加快PyTorch数据集的加载速度 在使用Pytorch训练神经网络时,最常见的与速度相关的瓶颈是数据加载的模块。...什么是PyTorch数据集 Pytorch提供了用于在训练模型时处理数据管道的两个主要模块:Dataset和DataLoader。...Dataset是我们进行数据集处理的实际部分,在这里我们编写训练时读取数据的过程,包括将样本加载到内存和进行必要的转换。...对于更多的介绍请参考Numpy的文档,这里就不做详细的解释了 基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。...,因为我们能够完全的控制我们的数据,但是如果想在生产中应用还需要考虑使用,因为在生产中有些数据我们是无法控制的。

    1.2K20

    使用内存映射加快PyTorch数据集的读取

    什么是PyTorch数据集 Pytorch提供了用于在训练模型时处理数据管道的两个主要模块:Dataset和DataLoader。...Dataset是我们进行数据集处理的实际部分,在这里我们编写训练时读取数据的过程,包括将样本加载到内存和进行必要的转换。...对于更多的介绍请参考Numpy的文档,这里就不做详细的解释了。 基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的...,因为我们能够完全的控制我们的数据,但是如果想在生产中应用还需要考虑使用,因为在生产中有些数据我们是无法控制的。

    95220

    keras版Mask-RCNN来训练自己的目标检测数据集

    一、运行环境的安装: 1、下载好cuda9跟cudnn7,然后在安装好后,cuda其会自动添加到环境变量里,所以使用keras进行GPU加速的时候会自动使用这些库。...2、TensorFlow-gpu版本的安装,这个安装方法有三种, 第一种是直接在pycharm里的安装库里安装。 第二种就是使用pip来安装,这个在安装的时候可以指定安装的版本。...3、然后就安装keras就可以了。使用指令 pip install keras 接着就是安装那个labelme打标工具。...所以有多分类的标签名要不一样,同类的标签名要一样,例如人的标签名都是person。而mask要求不同的实例要放在不同的层中。...数据集 获取: 关注微信公众号 datayx 然后回复 mask 即可获取。 AI项目体验地址 https://loveai.tech 6、把打标后的jison文件转换为对应的五个文件。

    1.4K20

    MNIST数据集的导入与预处理

    MNIST数据集 MNIST数据集简介 MNIST数据集,是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。...MNIST数据集的获取 MNIST数据集网上流传的大体上有两类,不过两者有些不同,第一种是每幅图片大小是2828的,第二种是每幅图片大小是3232的,官网下载的是哪种不作细究,因为可以通过更简单的数据获取方法...,其它数据集也可以使用类似导入方式,但要去官网搜该数据集的命名方式。...老版本导入数据集叫fetch_data,在sklearn2.0版本之后已无法使用。 数据截取 为什么要数据的截取? 对于KNN来说,将MNIST的6-7万数据全扔进去会导致运行极其缓慢。...对sklearn来说,数据预处理主要需弄清楚fit,transform,fit_transform三个接口。 关于数据预处理更详细的内容之后会在我的专栏sklearn内进行后续更新。

    1.7K20

    proc 编程处理 select 获取的数据集

    使用 select 语句获取数据,有两种种结果,第一种,得到的结果只有一行,我们只需要用指定的变量来接收它就可以了,但第二种情况则是有多行数据,每一行数据,处理这种多行返回的数据也有两种方法,一个是使用一个二维宿主数组来接收这些结果...[2]保存了SQL语句处理的行数。...select 返回的一组数据,但是这组数据的个数如果超过了我们定义的数组的大小,那么就无法接收更多的数据了。...,我们可以一行一行的读取数据进行处理,而这种方法也存在部分缺陷,那就是依次遍历整个结果集,却不能定向的指定要取哪部分数据,所以呢,下面的滚动游标应运而生。...---- 以上便是我们介绍的 proc 编程中处理 select 返回数据的几种方法,每一种方法都各有取舍,所以在使用的时候要根据自己的情况来决定到底要使用哪个方法更适合自己。

    20920

    记录级别索引:Apache Hudi 针对大型数据集的超快索引

    元数据分为四个分区:文件、列统计信息、布隆过滤器和记录级索引。 元数据表与时间轴上的每个提交操作同步更新,换句话说,对元数据表的提交是对Hudi数据表的事务的一部分。...通过包含不同类型元数据的四个分区,此布局可实现多模式索引的目的: • files分区跟踪Hudi数据表的分区,以及每个分区的数据文件 • column stats分区记录了数据表每一列的统计信息 • bloom...写入索引 作为写入流程的一部分,RLI 遵循高级索引流程,与任何其他全局索引类似:对于给定的记录集,如果索引发现每个记录存在于任何现有文件组中,它就会使用位置信息标记每个记录。...与任何其他全局索引类似,RLI 要求表中所有分区的记录键唯一性。由于 RLI 跟踪所有记录键和位置,因此对于大型表来说,初始化过程可能需要一些时间。...在大型工作负载极度倾斜的场景中,由于当前设计的限制,RLI 可能无法达到所需的性能。 未来的工作 在记录级别索引的初始版本中有某些限制。

    65210

    JCIM|药物发现的超大型化合物数据集概述

    图1.目前已经建立的超大型化合物数据集 商业库 (大写字母、方块)、商业DNA编码库 (大写字母,双三角形)、专有空间 (数字,钻石) 和公共合集 (小写字母、球体)。...遗憾的是,二维子结构和相似性搜索对于1亿个分子或更多的库往往无法完成,但最近出现了一些快速搜索大型库的方法。尽管其中有些内容在同行评议的文献中没有讨论过,但我们认为这里值得提及。...从Enamine REAL中搜索8亿个分子的二维相似度需要3 s左右。然而,要保存多个大型数据库,需要最大的亚马逊云服务器的配置为48个物理核心上的768GB内存和96个逻辑处理器。...Google BigQuery提供了访问基于云的大型关系数据库的权限。它可以在数十秒内处理数十亿行和数十兆字节的数据,并以极低的代价将数据缩放到数百兆字节。...化学空间可视化 化学科学正在产生大量前所未有的包含化学结构和相关性质的大型高维数据集。需要算法对这些数据进行可视化,同时保留全局特征和局部特征,并具有足够的细节层次,以便于人类的检验和解释。

    1.2K20

    R语言处理一个巨大的数据集,而且超出了计算机的内存限制

    使用R编程处理一个超出计算机内存限制的巨大数据集时,可以采用以下策略(其他编程语言同理):使用数据压缩技术:将数据进行压缩,减小占用的内存空间。...可以使用R的数据压缩包(如bigmemory、ff、data.table)来存储和处理数据。逐块处理数据:将数据集拆分成较小的块进行处理,而不是一次性将整个数据集加载到内存中。...可以使用data.table包或readr包的分块读取数据的功能。使用索引:为了加快数据检索速度,可以在处理大型数据集时使用索引。...使用其他编程语言:如果R无法处理巨大数据集,可以考虑使用其他编程语言(如Python、Scala)或将数据导入到数据库中来进行处理。...以上是一些处理超出计算机内存限制的巨大数据集的常用策略,具体的选择取决于数据的特征和需求。

    1.1K91

    处理大数据集的灵活格式 —— JSON Lines

    在处理和分析大型数据集时,JSON Lines 格式成为了一种受欢迎的选择。...JSON Lines 通过将每个 JSON 对象放在独立的一行中,使得逐行读取和处理数据变得简单,易于处理大型数据集、容易与现有工具集成,具有灵活性和可扩展性、易于阅读和维护等特点。...与传统的 JSON 格式相比,JSON Lines 不需要一次性加载整个文件,而是可以逐行读取和处理数据。这种特性使得 JSON Lines 非常适用于处理大型数据集,无需担心内存限制或性能问题。...JSON Lines文件中的第一个值也应称为“第1个值” 2举个栗子 一个大小为 1GB 的 JSON 文件,当我们需要读取/写入内容时,需要读取整个文件、存储至内存并将其解析、操作,这是不可取的。...JSON Lines 格式非常适合处理日志文件等大型数据集。它通过逐行读取和处理数据,方便了大数据场景下的分析和处理。同时,它的灵活性和可扩展性使得我们可以根据需要定义自己的数据结构。

    1.1K10
    领券