首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

双塔模型中的负采样

作者:十方 推荐模型中双塔模型早已经普及.一个塔学用户表达.一个塔学item表达.很多双塔模型用各种各样的in-batch负采样策略.十方也是如此.往往使用比较大的batchsize,效果会比较好,但是由于内存限制...loss最典型的就是用sampled softmax: 提升训练效率,最好使的就是batch内负采样了,如下图(a)所示。...参考sampled softmax机制,论文修改上述公式为: 其中q(I)为采样偏差。...接下来就要说到cross-batch negative sampling,这个方法可以解决in-batch负采样中,存在batch size受到gpu显存大小,从而影响模型效果。...CBNS的softmax如下式所示: 在每次迭代结束,都会把当前mini-batch的embedding和采样概率加入memory bank.在下次训练过程中,除了使用batch内负样本,同时也会从

1.8K30

理解keras中的sequential模型

keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...Keras有两种不同的构建模型的方法: Sequential models Functional API 本文将要讨论的就是keras中的Sequential模型。...keras中的Sequential模型构建也包含这些步骤。 首先,网络的第一层是输入层,读取训练数据。...在keras中,Sequential模型的compile方法用来完成这一操作。例如,在下面的这一行代码中,我们使用’rmsprop’优化器,损失函数为’binary_crossentropy’。...总结 keras中的Sequential模型其实非常强大,而且接口简单易懂,大部分情况下,我们只需要使用Sequential模型即可满足需求。

3.6K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Keras中创建LSTM模型的步骤

    的复现与解读,新手博主,边学边记,以便后续温习,或者对他人有所帮助 概述 深度学习神经网络在 Python 中很容易使用 Keras 创建和评估,但您必须遵循严格的模型生命周期。...在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...这是 Keras 中的有用容器,因为传统上与图层关联的关注点也可以拆分并添加为单独的图层,清楚地显示它们在数据从输入到预测转换中的作用。...多类分类: Softmax激活函数,或”softmax”,每个类值一个输出神经元,假设为一热编码的输出模式。 2、编译网络 一旦我们定义了我们的网络,我们必须编译它。 编译是效率的一步。...总结 在这篇文章中,您发现了使用 Keras 库的 LSTM 循环神经网络的 5 步生命周期。 具体来说,您了解到: 1、如何定义、编译、拟合、评估和预测 Keras 中的 LSTM 网络。

    3.7K10

    GNN教程:DGL框架中的采样模型!

    DGL采用了和GraphSAGE类似的邻居采样策略,通过构建计算子图缩小了每次计算的图规模,这篇博文将会介绍DGL提供的采样模型。 ?...具体实现 在具体实现中,采样和计算是两个独立的模型,也就是说,我们通过采样获得子图,再将这个子图输入到标准的GCN模型中训练,这种解耦合的方式使模型变得非常灵活,因为我们可以对采样的方式进行定制,比如Stochastic...这种模型与采样分离的方式也是大部分支持超大规模图计算框架的方式(包括这里介绍的DGL,之后我们要介绍的Euler)。...if i >= 32: break 上面的代码中,model由GCNsampling定义,虽然它的名字里有sampling,但这只是一个标准的GCN模型,其中没有任何和采样相关的内容...这种采样-计算分离的模型基本是目前所有图神经网络计算大图时所采用的策略。

    1.9K10

    预测金融时间序列——Keras 中的 MLP 模型

    神经网络架构 我们将使用多层感知器作为基本模型。让我们把Keras作为一个实现框架——它非常简单、直观,你可以用它来实现相当复杂的计算图,但到目前为止我们还不需要它。...Keras 还允许我们非常灵活地控制训练过程,例如,如果我们的结果没有改善,最好减少梯度下降步骤的值——这正是 Reduce LR On Plateau 所做的,我们将其添加为回调到模型训练。...当我们面临过拟合时,我们需要为我们的模型添加正则化。...我们将从最常见的方式开始——在权重总和的L2 范数中向误差函数添加一个附加项,在Keras 中, 这是使用 keras.regularizers.activity_regularizer 完成的。...因此,值得使用近年来流行的 Dropout 技术为我们的模型添加更多的正则化——粗略地说,这是在学习过程中随机“忽略”一些权重,以避免神经元的共同适应(以便他们不学习相同的功能)。

    5.4K51

    基于序列模型的随机采样

    对于目前基于神经网络的序列模型,很重要的一个任务就是从序列模型中采样。比如解码时我们希望能产生多个不一样的结果,而传统的解码算法只能产生相似的结果。...不同采样方法对比 序列模型中的束搜索 在此之前,我们首先回顾一下束搜索。...图4 束搜索最终结果 序列模型中的随机采样 从序列模型中采集多个样本有两种经典的方法:基于蒙特卡洛的随机采样和基于蒙特卡洛的束搜索。...基于蒙特卡洛的随机采样 在序列模型中采样的最简单方法就是在贪婪搜索的基础上,在每一步挑选下一个词的时候不是根据它们相应的得分而是根据模型输出的下一个词分布来随机选取一个,这样重复到固定长度或者挑选到句子结束符时停止...利用这种方法,我们可以: 对于需要采样来计算句子级损失的任务,可以更高效地训练模型; 类似于使用Gumbel-Softmax的梯度作为Gumbel-Max梯度的有偏估计,为Gumbel-Top-K寻找类似的梯度有偏估计

    88820

    如何为Keras中的深度学习模型建立Checkpoint

    深度学习模式可能需要几个小时,几天甚至几周的时间来训练。 如果运行意外停止,你可能就白干了。 在这篇文章中,你将会发现在使用Keras库的Python训练过程中,如何检查你的深度学习模型。...Checkpoint最佳神经网络模型 如果验证精度提高的话,一个更简单的Checkpoint策略是将模型权重保存到相同的文件中。...在下面的示例中,模型结构是已知的,并且最好的权重从先前的实验中加载,然后存储在weights.best.hdf5文件的工作目录中。 那么将该模型用于对整个数据集进行预测。...在这篇文章中,你将会发现在使用Keras库的Python训练过程中,如何检查你的深度学习模型。 让我们开始吧。...在下面的示例中,模型结构是已知的,并且最好的权重从先前的实验中加载,然后存储在weights.best.hdf5文件的工作目录中。 那么将该模型用于对整个数据集进行预测。

    14.9K136

    揭示语言大模型的采样过程

    在实际操作中,当我们将温度设置为0时,模型总会选择具有最大logit值的词元,例如执行一个argmax操作,而非执行logit调整和softmax计算。...Top-k Top-k是一种采样策略,能在不过多牺牲模型响应多样性的情况下减少计算负载。回想一下,为了计算所有可能值的概率分布,需要使用softmax层。...根据应用的多样性需求,k的取值可以在50到500之间,这远小于模型的词汇表大小。然后模型会从这些排名前K的数值中采样。...在Top-p采样中,模型按概率降序对最可能的下一个值求和,并在总和达到p时停止。只有在这个累积概率范围内的值才会被考虑。语言模型中常见的Top-p(核心)采样值通常介于0.9到0.95之间。...以下内容是我的个人见解,可能存在错误,欢迎反馈和指正! 总的来说,为生成一个词元,模型会在满足约束条件的值中采样。

    27010

    FOC控制中电流的采样

    摘要 本篇笔记主要记录基于恩智浦MPC5744P的电机FOC控制中电流的采样。。 准备工作 安装S32DS for PA, 因为我们在S32DS下开发MPC5744P。...CTU事件触发ADC电流采样,在CTU的中断中去获取电流的ADC值,经过滤波后就可以做电流算法的闭环控制,这个芯片的ADC 有两种模式。...CTU操作的模式有触发模式和顺序模式。我们采用触发模式。 这里需要注意的是CTU的FIFO是不同的,0和1用来做快速采样,而2和3用来配置作为低速采样。...配置和开发 在S32DS开发环境中配置CTU和ADC, ADC配置 更多参数的配置请参考收据手册,这个需要认真阅读手册配置,可以参考例程。...但在电机控制中,为了达到同步和快速的电流采样,都是用触发同步采样,提供给算法实施闭环控制。有兴趣的可以多研究研究。

    1.5K20

    【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用

    代码: # 使用迁移学习的思想,以VGG16作为模板搭建模型,训练识别手写字体 # 引入VGG16模块 from keras.applications.vgg16 import VGG16 # 其次加载其他模块...from keras.datasets import mnist # 加载OpenCV(在命令行中窗口中输入pip install opencv-python),这里为了后期对图像的处理, # 大家使用...这些变化是为了使图像满足VGG16所需要的输入格式 import cv2 import h5py as h5py import numpy as np # 建立一个模型,其类型是Keras的Model...这里用include_top = False表明我们迁移除顶层以外的其余网络结构到自己的模型中 # VGG模型对于输入图像数据要求高宽至少为48个像素点,由于硬件配置限制,我们选用48个像素点而不是原来...model_vgg.input X传进来 #把model Y传进来 就可以训练模型了 # 打印模型结构,包括所需要的参数 model_vgg_mnist.summary() #以下是原版的模型结构

    2.2K20

    Keras 中神经网络模型的 5 步生命周期

    在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...Keras 中神经网络模型的5步生命周期 步骤 1.定义网络 第一步是定义您的神经网络。 神经网络在 Keras 中定义为层序列。这些层的容器是 Sequential 类。...这在 Keras 中是一个有用的概念,因为传统上与层相关的关注点也可以拆分并作为单独的层添加,清楚地显示它们在从输入到预测的数据转换中的作用。...多类分类(> 2 类):假设单热编码输出模式,Softmax 激活函数或'softmax'和每类值一个输出神经元。 第 2 步。编译网络 一旦我们定义了网络,我们就必须编译它。...如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。

    1.9K30

    keras中的数据集

    数据在深度学习中的重要性怎么说都不为过,无论是训练模型,还是性能调优,都离不开大量的数据。有人曾经断言中美在人工智能领域的竞赛,中国将胜出,其依据就是中国拥有更多的数据。...具体说来,keras.datasets模块包含了加载和获取流行的参考数据集的方法。...通过这些数据集接口,开发者不需要考虑数据集格式上的不同,全部由keras统一处理,下面就来看看keras中集成的数据集。...注意 keras.datasets模块包含了从网络下载数据的功能,下载后的数据集保存于 ~/.keras/datasets/ 目录。因为这些数据集来源各有不同,有些需要访问外国网站才能访问。...出于方便起见,单词根据数据集中的总体词频进行索引,这样整数“3”就是数据中第3个最频繁的单词的编码。

    1.8K30

    评估Keras深度学习模型的性能

    Keras是Python中一个的强大而易用的库,主要用于深度学习。在设计和配置你的深度学习模型时,需要做很多决策。大多数决定必须通过反复试错的方法来解决,并在真实的数据上进行评估。...因此,有一个可靠的方法来评估神经网络和深度学习模型的性能至关重要。 在这篇文章中,你将学到使用Keras评估模型性能的几种方法。 让我们开始吧。 ?...验证数据集可以通过validation_data参数指定给Keras中的fit()函数。...在下面的例子中,我们使用Python的scikit-learn机器学习库中的StratifiedKFold类,将训练数据集分为10折。...你学到了三种方法,你可以使用Python中的Keras库来评估深度学习模型的性能: 使用自动验证数据集。 使用手动验证数据集。 使用手动k-折交叉验证。

    2.2K80

    LSTM生成尼采风格文章

    一种更有趣的方法会产生更令人惊讶的选择:它通过从下一个字符的概率分布中抽样,在抽样过程中引入随机性。这称为随机抽样。注意,贪心采样也可以作为概率分布的采样:一个特定字符的概率为1而其他概率为0。...从模型的softmax输出中概率地采样是巧妙的:它允许在某些时候对不太可能的字符进行采样,产生更有趣的句子,并且有时通过提出在训练数据中未发生的新的,逼真的单词来显示模型创造力。...从“真实”概率分布中抽样(由模型的softmax函数输出的分布)构成这两个极端之间的中间点。但是,可能希望探索许多其他更高或更低熵的中间点。...为了控制采样过程中的随机性,我们将引入一个名为softmax temperature的参数,该参数表示用于采样的概率分布的熵:它表征下一个字符的选择将会出乎意料或可预测的程度。...给定温度值,通过以下列方式对其进行重新加权,从原始概率分布(模型的softmax输出)计算新的概率分布。

    1.6K40

    Keras中神经网络模型的5阶段生命周期

    在这篇文章中,您将了解在Keras中创建,训练和评估深度学习神经网络的模型生命周期的每一步,以及如何使用训练好的模型进行预测。...[jp0j2317q1.png] Keras中神经网络模型的5阶生命周期 第1步 定义网络 第一步是定义你的神经网络。 神经网络在Keras中的本质是一系列堆叠起来的层。...多分类(> 2类):假设使用独热(one-hot)编码输出模式,Softmax激活函数,即“softmax”,输出层神经元数量与要求进行分类的类别数量一致。...在Keras中,用这个训练好的网络模型在测试数据集上进行测试时,可以看到包括损失函数的结果在内的所有在编译时指定的测量指标的结果,比如分类的准确度。Keras会返回一个包含这些评估指标的list。...具体来说,你了解到: 如何在Keras中定义,编译,拟合,评估和预测神经网络。 如何为分类和回归问题选择激活函数和配置输出层结构。 如何在Keras开发和运行您的第一个多层感知机模型。

    3.1K90

    【论文解读】NLP重铸篇之Word2vec

    本文使用python+tensorflow2.0来复现word2vec模型,所以模型中的反向梯度计算与参数优化更新,都是使用的tf中的自动求导与优化器实现,也因此本文中只涉及到word2vec的两种结构...softmax的loss计算 如果用softmax来取代上面式子中的f函数,那么ouput的计算方式可具体为: 其中 表示预测为第i个词的概率, 表示第i个词的输出权重向量,N表示词表大小。...Huffman树——层次softmax 层次softmax是一种高效计算softmax的方法,其使用二叉树来表示词表中的所有词,每一个词都必须是树的叶子结点,对于每一个结点,都存在唯一的路径从根结点到当前叶子结点...负采样的思想比层次softmax更加直接:为了解决softmax要计算和更新的参数太多的问题,负采样每次只计算和更新几个参数。...采样权重调整 根据负采样的思想,预测的词肯定需要在小词集中出现,然后只需要从其他词中抽取一些词作为负样本(负采样的由来)。

    2.9K70

    RS Meet DL(72)-采样修正的双塔模型

    这种基于表示学习的方法通常面临两个方面的挑战: 1)工业界中物品的数量十分巨大。 2)通过收集用户反馈得到的数据集十分稀疏,导致模型对于长尾物品的预测具有很大的方差,同时也面临着物品冷启动的问题。...,分别记作u(x,θ)和v(y,θ),并通过内积得到二者的相似性得分: 那么给定一个x,从M个物品中选择对应y的概率可以经由下面的softmax方程得到: 损失函数如下: 上述的做法相当于把该样本中的...假设一个包含B条数据的mini-batch,那么对于任意一条数据,softmax计算公式如下: 这种做法相当于把一个batch中此条数据之外物品当作负样本。...因此基于如下的公式对于x和y的评分进行一定程度的修正: 上式中,pj代表第j条样本对应的物品yj被一个mini-batch采样到的概率,这在下一节会详细介绍。...那么此时,softmax计算公式变为: 而batch的损失函数计算如下: 好了,整个的双塔模型训练过程再来回顾一下: 上图中采样概率的预估算法,就是我们下一节要介绍的内容。

    3.5K40
    领券