首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Keras在训练深度学习模型时监控性能指标

Keras库提供了一套供深度学习模型训练时的用于监控和汇总的标准性能指标并且开放了接口给开发者使用。 除了为分类和回归问题提供标准的指标以外,Keras还允许用户自定义指标。...这使我们可以在模型训练的过程中实时捕捉模型的性能变化,为训练模型提供了很大的便利。 在本教程中,我会告诉你如何在使用Keras进行深度学习时添加内置指标以及自定义指标并监控这些指标。...为回归问题提供的性能评估指标 Keras为分类问题提供的性能评估指标 Keras中的自定义性能评估指标 Keras指标 Keras允许你在训练模型期间输出要监控的指标。...Keras中的自定义性能评估指标 除了官方提供的标准性能评估指标之外,你还可以自定义自己的性能评估指标,然后再调用compile()函数时在metrics参数中指定函数名。...Keras Metrics API文档 Keras Metrics的源代码 Keras Loss API文档 Keras Loss的源代码 总结 在本教程中,你应该已经了解到了如何在训练深度学习模型时使用

8K100

基于 Keras 对深度学习模型进行微调的全面指南 Part 2

翻译 | 霍晓燕 校对 | 杨东旭 整理 | 余杭 本部分属该两部系列中的第二部分,该系列涵盖了基于 Keras 对深度学习模型的微调。...第一部分阐述微调背后的动机和原理,并简要介绍常用的做法和技巧。本部分将详细地指导如何在 Keras 中实现对流行模型 VGG,Inception 和 ResNet 的微调。...硬件说明 我强烈建议在涉及繁重计算的Covnet训练时,使用GPU加速。速度差异相当大,我们谈论的 GPU 大约几小时而 CPU 需要几天。...该模型在验证集上达到了 7.5% 的前 5 错误率,这使得他们在竞赛中获得了第二名。 VGG16 模型示意图: ? 可以在 vgg16.py 中找到用于微调 VGG16 的脚本。...这是我尝试使用基于 Keras 微调的好机会。 按照上面列出的微调方法,结合数据预处理、数据增强和模型集成,我们团队在竞赛中获得了前 4% 的名次。 本文详细介绍了我们使用的方法和经验。

1.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于 Keras 对深度学习模型进行微调的全面指南 Part 1

    我将借鉴自己的经验,列出微调背后的基本原理,所涉及的技术,及最后也是最重要的,在本文第二部分中将分步详尽阐述如何在 Keras 中对卷积神经网络模型进行微调。 首先,为什么对模型进行微调?...当我们得到一个深度学习任务时,例如,一个涉及在图像数据集上训练卷积神经网络(Covnet)的任务,我们的第一直觉将是从头开始训练网络。...因此,更常见的是微调一个在大数据集上已经训练好的模型,就像 ImageNet(120 万的标注图像),然后在我们的小数据集上继续训练(即运行反向传播)。...Caffe Model Zoo -为第三方贡献者分享预训练 caffe 模型的平台 Keras Keras Application - 实现最先进的 Convnet 模型,如 VGG16 / 19,googleNetNet...在 Keras 中微调 在这篇文章的第二部分,我将详细介绍如何在 Keras 中对流行模型 VGG,Inception V3 和 ResNet 进行微调。

    1.4K10

    在TensorFlow中使用模型剪枝将机器学习模型变得更小

    学习如何通过剪枝来使你的模型变得更小 ? 剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。...(如手机)时,剪枝等优化模型技术尤其重要。...模型变得稀疏,这样就更容易压缩。由于可以跳过零,稀疏模型还可以加快推理速度。 预期的参数是剪枝计划、块大小和块池类型。 在本例中,我们设置了50%的稀疏度,这意味着50%的权重将归零。...model_to_prune.fit(X_train,y_train,epochs=100,validation_split=0.2,callbacks=callbacks,verbose=0) 在检查这个模型的均方误差时...在测试时,对于这个特定情况,layer_pruning_params给出的错误比pruning_params要低。

    1.2K20

    防止在训练模型时信息丢失 用于TensorFlow、Keras和PyTorch的检查点教程

    如果你在工作结束时不检查你的训练模式,你将会失去所有的结果!简单来说,如果你想使用你训练的模型,你就需要一些检查点。 FloydHub是一个极其易用的深度学习云计算平台。...短期训练制度(几分钟到几小时) 正常的训练制度(数小时到一整天) 长期训练制度(数天至数周) 短期训练制度 典型的做法是在训练结束时,或者在每个epoch结束时,保存一个检查点。...注意:这个函数只会保存模型的权重——如果你想保存整个模型或部分组件,你可以在保存模型时查看Keras文档。...最后,我们已经准备好看到在模型训练期间应用的检查点策略。...(通常是一个循环的次数),我们定义了检查点的频率(在我们的例子中,指的是在每个epoch结束时)和我们想要存储的信息(epoch,模型的权重,以及达到的最佳精确度):

    3.2K51

    QLoRa:在消费级GPU上微调大型语言模型

    大多数大型语言模型(LLM)都无法在消费者硬件上进行微调。例如,650亿个参数模型需要超过780 Gb的GPU内存。这相当于10个A100 80gb的gpu。...QLoRa: Quantized LLMs with Low-Rank Adapters 2021年6月,发布的LoRa让我们的微调变得简单,我也在以前的文章中也有过介绍。...使用QLoRa对GPT模型进行微调 硬件要求: 下面的演示工作在具有12gb VRAM的GPU上,用于参数少于200亿个模型,例如GPT-J。...bnb_4bit_compute_dtype:当以4位加载和存储模型时,在需要时对其进行部分量化,并以16位精度(bfloat16)进行所有计算。...总结 LoRa让我们的微调变得简单,而QLoRa可以让我们使用消费级的GPU对具有10亿个参数的模型进行微调,并且根据QLoRa论文,性能不会显著下降。

    97530

    在Keras+TF环境中,用迁移学习和微调做专属图像识别系统

    Greg Chu,博客Deep Learning Sandbox的作者,又写了一篇文章,教你在Keras + TensorFlow环境中,用迁移学习(transfer learning)和微调(fine-tuning...在实际应用中,深度学习相关的研究人员和从业者通常运用迁移学习和微调方法,将ImageNet等数据集上训练的现有模型底部特征提取层网络权重传递给新的分类网络。这种做法并不是个例。 这种做法的效果很好。...在这种情况下,我们有足够的数据和信心对整个网络进行微调。 另外,在新数据集样本量较大时,你也可以尝试从头开始训练一个网络。 数据增强 数据增强方法能大大增加训练数据集的样本量和增大网络模型的泛化能力。...迁移学习 代码5 微调 代码6 在微调过程中,最重要的是与网络从头开始训练时所使用的速率相比(lr = 0.0001),要降低学习率,否则优化过程可能不稳定,Loss函数可能会发散。...代码8 模型预测 现在我们通过keras.model保存训练好的网络模型,通过修改predict.py中的predict函数后,只需要输入本地图像文件的路径或是图像的URL链接即可实现模型预测。

    1.4K51

    重新聚焦Attention在微调大模型中的重要性

    作者丨Baifeng@知乎(已授权) 来源丨https://zhuanlan.zhihu.com/p/632301499 编辑丨极市平台 极市导读 在只微调一小部分参数的情况下超越fine-tuning...论文链接:https://arxiv.org/pdf/2305.15542 GitHub链接:https://github.com/bfshi/TOAST 我们发现在一个下游任务上微调大模型时,目前的方法...(fine-tuning,LoRA,prompt tuning等等)往往无法将模型的attention聚焦在和下游任务相关的信息上。...图1:(a) 我们的方法通过重新聚焦模型的attention来大幅提升大模型在下游任务上的表现;(b) 目前的微调方法往往无法将模型的注意力集中到和下游任务有关的信息上(在这个例子里是前景的鸟)。...我们在视觉和语言任务上都做了实验,在视觉上我们可以在只微调一小部分参数的情况下超越fine-tuning,LoRA,VPT等方法: TOAST是我们的方法 在语言任务上,我们在只微调7%左右的参数的情况下

    13010

    在python 深度学习Keras中计算神经网络集成模型

    这可能意味着训练结束时的模型可能不是稳定的或表现最佳的权重集,无法用作最终模型。 解决此问题的一种方法是使用在训练运行结束时多个模型的权重平均值。...解决此问题的一种方法是在训练过程即将结束时合并所收集的权重。通常,这可以称为时间平均,并称为Polyak平均或Polyak-Ruppert平均,以该方法的原始开发者命名。...多层感知器模型 在定义模型之前,我们需要设计一个集合的问题。 在我们的问题中,训练数据集相对较小。具体来说,训练数据集中的示例与保持数据集的比例为10:1。...在每个训练时期的训练和测试数据集上模型精度的学习曲线 将多个模型保存到文件 模型权重集成的一种方法是在内存中保持模型权重的运行平均值。...另一种选择是第一步,是在训练过程中将模型权重保存到文件中,然后再组合保存的模型中的权重以生成最终模型。

    86710

    ChatGenTitle:使用百万arXiv论文信息在LLaMA模型上进行微调的论文题目生成模型

    ChatGenTitle:使用百万arXiv论文信息在LLaMA模型上进行微调的论文题目生成模型 图片 图片 相关信息 1.训练数据集在Cornell-University/arxiv,可以直接使用...在微调过程中,使用一个预先训练好的模型作为基础模型,然后在新的数据集上对该模型进行微调。Instruct微调是一种通过更新预训练模型的所有参数来完成的微调方法,通过微调使其适用于多个下游应用。...与Instruct微调相比,LoRA在每个Transformer块中注入可训练层,因为不需要为大多数模型权重计算梯度,大大减少了需要训练参数的数量并且降低了GPU内存的要求。...Instruct微调是指在深度神经网络训练过程中调整模型参数的过程,以优化模型的性能。在微调过程中,使用一个预先训练好的模型作为基础模型,然后在新的数据集上对该模型进行微调。...与Instruct微调相比,LoRA在每个Transformer块中注入可训练层,因为不需要为大多数模型权重计算梯度,大大减少了需要训练参数的数量并且降低了GPU内存的要求。

    46601

    【小白学习PyTorch教程】十六、在多标签分类任务上 微调BERT模型

    「@Author:Runsen」 BERT模型在NLP各项任务中大杀四方,那么我们如何使用这一利器来为我们日常的NLP任务来服务呢?首先介绍使用BERT做文本多标签分类任务。...论文: https://arxiv.org/pdf/1905.05583.pdf 这篇论文的主要目的在于在文本分类任务上探索不同的BERT微调方法并提供一种通用的BERT微调解决方法。...微调后的BERT在七个英文数据集及搜狗中文数据集上取得了当前最优的结果。...BERT模型 bert微调就是在预训练模型bert的基础上只需更新后面几层的参数,这相对于从头开始训练可以节省大量时间,甚至可以提高性能,通常情况下在模型的训练过程中,我们也会更新bert的参数,这样模型的性能会更好...微调BERT模型主要在D_out进行相关的改变,去除segment层,直接采用了字符输入,不再需要segment层。

    1.8K20

    微调预训练的 NLP 模型

    当分析特定领域内的关系时,这种限制变得明显。...例如,在处理就业数据时,我们希望模型能够识别“数据科学家”和“机器学习工程师”角色之间的更接近,或者“Python”和“TensorFlow”之间更强的关联。...这一适应过程显着增强了模型的性能和精度,充分释放了 NLP 模型的潜力。 ❝在处理大型预训练 NLP 模型时,建议首先部署基本模型,并仅在其性能无法满足当前特定问题时才考虑进行微调。...在本教程中,我们将专注于一次(几次)学习方法与用于微调过程的暹罗架构相结合。 理论框架 可以通过监督学习和强化学习等各种策略来微调 ML 模型。...这些分数确保当模型根据我们特定于上下文的训练数据进行微调时,它保持一定程度的通用性。

    30531

    在tensorflow2.2中使用Keras自定义模型的指标度量

    在本文中,我将使用Fashion MNIST来进行说明。然而,这并不是本文的唯一目标,因为这可以通过在训练结束时简单地在验证集上绘制混淆矩阵来实现。...我们在这里讨论的是轻松扩展keras.metrics的能力。用来在训练期间跟踪混淆矩阵的度量,可以用来跟踪类的特定召回、精度和f1,并使用keras按照通常的方式绘制它们。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...然而,在我们的例子中,我们返回了三个张量:precision、recall和f1,而Keras不知道如何开箱操作。...)、编译并训练一个顺序模型(处理函数和子类化API的过程非常简单,只需实现上面的函数)。

    2.5K10

    TensorFlow 2.0到底怎么样?简单的图像分类任务探一探

    在 TensorFlow 2.0 中,之前的 tf.train 和 tf.keras.optimizers API 中的优化器已经统一在 tf.keras.optimizers 中,并用升级的 TensorFlow...训练模型 TensorFlow 2.0 中的 tf.keras API 现在完全支持 tf.data API,所以训练模型时可以轻松使用 tf.data.Dataset。...模型的微调 接着我们试着进一步提高模型的准确率。当我们在使用迁移学习时,我们只要在固定 MobileNetV2 的情况下训练新的分类层即可。...如果一开始没有固定权重,那模型会因新分类层的随机初始化而「忘掉」开始时所有的知识。不过既然我们已经先训练了分类层,那么我们就可以解除对预训练层级的固定,从而根据特定的数据集对模型进行微调。...根据准确率和损失的图,模型性能会随着 epoch 的增加而增加。 ? 微调 30 个 epoch 后的准确率和损失。

    99120

    预训练BERT,官方代码发布前他们是这样用TensorFlow解决的

    BERT 简介 BERT 的全称是基于 Transformer 的双向编码器表征,其中「双向」表示模型在处理某一个词时,它能同时利用前面的词和后面的词两部分信息。...在新任务微调模型 python train_bert_fine_tuning.py [Done] 在项目作者的试验中,即使在微调的起点,刚刚从预训练模型恢复参数也能获得比从头训练更低的损失。...如何使微调阶段变得更高效并同时不影响在预训练阶段学到的结果和知识? 在微调阶段使用较小的学习率,因此只需在很小的范围内进行调整。...Keras 实现 基于 TensorFlow 的实现同样没有提供预训练语言模型,这样的模型在预训练阶段会需要大量的计算力,这样的计算力需求对于很多研究者与开发者都是接受不了的。...通过 Keras 加载 OpenAI 模型已经在 TensorFlow 后端和 Theano 后端得到测试。

    93320

    keras-yolov3 + Kalman-Filter 进行人体多目标追踪(含代码)

    + kalman filter的笔者的一些微调 2.1 KF算法微调 2.2 keras-yolov3的detector微调 3 keras-yolov3-KF的代码解析 ---- 1 yolov3...问题二: one-stage算法的缺陷是不够稳定,笔者本项目尝试的是keras-yolov3,在开阔场景没问题,但是在一切人密度较大,遮挡物较多,像素不够高清的视频上发现检测器容易遗漏物体,前两帧可以检测...---- 2 keras-yolov3 + kalman filter的笔者的一些微调 2.1 KF算法微调 笔者引用的是项目:srianant/kalman_filter_multi_object_tracking...2.2 keras-yolov3的detector微调 笔者之前的博客中:自有数据集上,如何用keras最简单训练YOLOv3目标检测就是用keras-yolov3训练yolov3模型,该项目也是有预训练模型...那么步骤变得简单一些: 加载keras yolov3 coco 预训练模型 解析 # 加载keras yolov3 coco预训练模型 yolo_test_args = { "model_path

    3.5K30

    Deep learning with Python 学习笔记(3)

    (以及可复用性)取决于该层在模型中的深度。...但出于同样的原因,这种方法不允许你使用数据增强 在顶部添加 Dense 层来扩展已有模型(即 conv_base),并在输入数据上端到端地运行整个模型 这样你可以使用数据增强,因为每个输入图像进入模型时都会经过卷积基...可见,此时没有出现明显的过拟合现象,在验证集上出现了更好的结果 此处应该可以使用数据增强的方式扩充我们的数据集,然后再通过第一种方法来训练分类器 模型微调 另一种广泛使用的模型复用方法是模型微调(fine-tuning...微调这些更专业化的特征更加有用,因为它们需要在你的新问题上改变用途 训练的参数越多,过拟合的风险越大 微调网络的步骤如下 在已经训练好的基网络(base network)上添加自定义网络 冻结基网络...if set_trainable: layer.trainable = True else: layer.trainable = False 微调网络时可以使用学习率非常小的

    60620

    在腾讯云云服务器上推理及微调Qwen2-7B大语言模型

    今天,我们将深入探讨如何在腾讯云云服务器上部署和微调2024年6月推出的大型语言模型Qwen2中的Qwen2-7B,探索其强大的代码和数学能力、出色的多语言处理能力,加速您的AI项目进程。...购买腾讯云服务器 我在腾讯云CVM中购买了一台GPU计算型GN10X的服务器,其显存有32GB。详细配置见以上截图。 注意,在购买时,我选择了后台自动安装GPU驱动。...使用vllm进行模型推理 在腾讯云云服务器的命令行中,通过以下命令,即可启动模型推理。...下载微调依赖 pip install deepspeed pip install llamafactory pip install click -U 微调Demo 这里使用llamafactory来微调...模型导出成功后,会显示“模型导出完成。” 导出后的模型内容如下图所示。 总结 Qwen2-7B模型在处理多语言、长文本以及复杂问题解决方面展现出的能力,使其成为了研究和工业界的有力工具。

    1.6K10
    领券