损失计算是基于预测值和实际值之间的差异来做的。如果预测值与实际值相差甚远,损失函数将得到一个非常大的数值。 Keras 是一个创建神经网络的库,它是开源的,用 Python 语言编写。...实现自定义损失函数 ---- 现在让我们为我们的 Keras 模型实现一个自定义的损失函数。首先,我们需要定义我们的 Keras 模型。...定义 keras 的自定义损失函数 要进一步使用自定义损失函数,我们需要定义优化器。我们将在这里使用 RMSProp 优化器。RMSprop 代表均方根传播。...你可以查看下图中的模型训练的结果: epoch=100 的 Keras 模型训练 结语 ---- 在本文中,我们了解了什么是自定义损失函数,以及如何在 Keras 模型中定义一个损失函数。...然后,我们使用自定义损失函数编译了 Keras 模型。最后,我们成功地训练了模型,实现了自定义损失功能。
损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...='sgd') 你可以传递一个现有的损失函数名,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...y_true, y_pred): return K.categorical_crossentropy(y_true, y_pred) 注意: 当使用categorical_crossentropy损失时...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels
这里是一个例子,与上面那个相似: from keras import backend as K from keras.engine.topology import Layer class MyLayer...2.自定义评价函数 自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。...rmsprop', loss='binary_crossentropy', metrics=['accuracy', mean_pred]) 3.自定义损失函数...自定义损失函数也应该在编译的时候(compile)传递进去。...(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制: from keras.models import load_model
引言 我们需要一定的准则来评估不同机器学习模型的优劣,这就引申出损失函数和风险函数。 损失函数:评估模型单次预测的好坏 风险函数:度量平均意义下模型的好坏 损失函数的定义 监督学习是在假设空间 ?...作为决策函数,对于给定的输入 ? ,由 ? 给出相应的输出 ? ,用损失函数来衡量预测值 ? 和真实值 ? 之间的差距,它是一个非负实值函数,记作 ? 。 常用的损失函数 1. 0-1损失函数 ?...平方损失函数 ? 3. 绝对损失函数 ? 4. 对数似然损失函数 ? 风险函数 当损失函数越小时意味着模型拟合效果越好,损失函数的期望是: ? 这是理论上模型 ? 关于联合分布 ?...的平均意义下的损失,称为风险函数(或者期望损失)。 1.风险函数与监督学习的关系 监督学习的目的就是选择令期望风险最小化的模型,但是由于联合分布 ?...例如极大似然估计就是经验风险最小化的一个例子(在模型是条件概率分布,损失函数是对数损失函数时等价)。
、滑动平均ema、正则化regularization (1)损失函数(loss):预测值(y)与已知答案(y_)的差距。...= tf.reduce_mean(tf.square(y_ - y)) (拟合可以预测销量的函数)5、自定义损失函数 如预测商品销量,预测多了,损失成本;预测少了,损失利润。...自定义损失函数 y:标准答案数据集的; y_:预测答案 计算出的 损失和loss = tf.reduce_sum(tf.where(tf.greater(y, y_), COSE(y - y_), PROFIT...(y_ - y))) 把所有的损失求和6、交叉熵 表征两个概率分布之间的距离 交叉熵越大,两个概率分布越远;交叉熵越小,两个概率分布越近。...也就是 损失函数示例代码:#coding=utf-8''' 用自定义损失函数 预测酸奶日销量'''# 酸奶成功1元,酸奶利润9元# 预测少了损失大,故不要预测少,故生成的模型会多预测一些# 导入模块
各种损失函数的优缺点详解 损失函数或者代价函数的目的是:衡量模型的预测能力的好坏。...代价函数(Cost function):是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。...模型在训练阶段会拟合出一个函数,其中的函数是包含参数的。 损失函数或者代价函数越小越好,也就说明预测值和标签的值越接近,模型的预测能力越强。...但是如何才能让损失函数或者代价函数的值得到优化,换句话说,优化的就是模型拟合出的函数参数,通过寻找合适参数实现模型的预测能力变强的梦想,如何寻找优秀的参数值,那就需要梯度下降出场解救模型能力。...左侧就是梯度下降法的核心内容,右侧第一个公式为假设函数,第二个公式为损失函数。 左侧 表示假设函数的系数, 为学习率。
互联网上有很多关于梯度提升的很好的解释(我们在参考资料中分享了一些选择的链接),但是我们注意到很少有人提起自定义损失函数的信息:为什么要自定义损失函数,何时需要自定义损失函数,以及如何自定义损失函数。...这篇文章中我们将总结自定义损失函数在很多现实问题中的重要性,以及如何使用 LightGBM gradient boosting(LightGBM渐变增强包) 实现它们。...蓝色:训练的损失。橙色:验证损失。训练和验证都使用相同的自定义损失函数 ? k-fold交叉验证。每个测试评分与验证损失 记住,验证策略也非常重要。上面的训练/验证分离是许多可能的验证策略之一。...为了对其进行编码,我们定义了一个自定义MSE函数,它对正残差的惩罚是负残差的10倍。下图展示了我们的自定义损失函数与标准MSE损失函数的对比。 ?...这里是一个Jupyter笔记本,展示了如何实现自定义培训和验证损失函数。细节在笔记本上,但在高层次上,实现略有不同。
技术背景 损失函数是机器学习中直接决定训练结果好坏的一个模块,该函数用于定义计算出来的结果或者是神经网络给出的推测结论与正确结果的偏差程度,偏差的越多,就表明对应的参数越差。...自定义损失函数 由于python语言的灵活性,使得我们可以继承基本类和函数,只要使用mindspore允许范围内的算子,就可以实现自定义的损失函数。...5.186701] The total time cost is: 6.87545919418335s 可以从这个结果中发现的是,计算出来的结果跟最开始使用的内置的MSELoss结果是一样的,这是因为我们自定义的这个求损失函数的形式与内置的...总结概要 在不同的训练场景中,我们时常需要使用不同的损失函数来衡量一个模型的计算结果的优劣,本文重点介绍了在MindSpore中如何去自定义一个损失函数。...基于MindSpore中的Loss类,我们可以通过继承该类后,再重写construct函数和get_loss函数来实现全面自定义的损失函数形式与内容。
MSE是目标变量与预测值之间距离平方之和。 ? 下面是一个MSE函数的图,其中真实目标值为100,预测值在-10,000至10,000之间。预测值(X轴)= 100时,MSE损失(Y轴)达到其最小值。...MSE损失(Y轴)与预测值(X轴)关系图 2、平均绝对误差,L1损失(Mean Absolute Error, L1 Loss) 平均绝对误差(MAE)是另一种用于回归模型的损失函数。...损失范围也是0到∞。 ? ? MAE损失(Y轴)与预测值(X轴)关系图 3、MSE vs MAE (L2损失 vs L1损失) 简而言之, 使用平方误差更容易求解,但使用绝对误差对离群点更加鲁棒。...我们该如何选择使用哪种损失函数? 由于MSE对误差(e)进行平方操作(y - y_predicted = e),如果e> 1,误差的值会增加很多。...Quantile Loss(Y轴)与预测值(X轴)关系图。真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。 ?
如何选择合适的损失函数 机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。...MSE是目标变量与预测值之间距离平方之和。 下面是一个MSE函数的图,其中真实目标值为100,预测值在-10,000至10,000之间。预测值(X轴)= 100时,MSE损失(Y轴)达到其最小值。...MSE损失(Y轴)与预测值(X轴)关系图 2、平均绝对误差,L1损失(Mean Absolute Error, L1 Loss) 平均绝对误差(MAE)是另一种用于回归模型的损失函数。...我们该如何选择使用哪种损失函数? 由于MSE对误差(e)进行平方操作(y - y_predicted = e),如果e> 1,误差的值会增加很多。...Quantile Loss(Y轴)与预测值(X轴)关系图。真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。
贝叶斯网络 source coding # -*- coding:utf-8 -*- # /usr/bin/python ''' @Author: Yan E...
MSE是目标变量与预测值之间距离平方之和。 下面是一个MSE函数的图,其中真实目标值为100,预测值在-10,000至10,000之间。预测值(X轴)= 100时,MSE损失(Y轴)达到其最小值。...MSE损失(Y轴)与预测值(X轴)关系图 2、平均绝对误差,L1损失(Mean Absolute Error, L1 Loss) 平均绝对误差(MAE)是另一种用于回归模型的损失函数。...损失范围也是0到∞。 MAE损失(Y轴)与预测值(X轴)关系图 3、MSE vs MAE (L2损失 vs L1损失) 简而言之, 使用平方误差更容易求解,但使用绝对误差对离群点更加鲁棒。...我们该如何选择使用哪种损失函数? 由于MSE对误差(e)进行平方操作(y - y_predicted = e),如果e> 1,误差的值会增加很多。...Quantile Loss(Y轴)与预测值(X轴)关系图。真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。
,欧氏距离和余弦距离有单调关系,所以,在预测阶段,归一化后的特征选取哪种度量进行判别均可 可对不同损失函数按度量方式进行划分, 欧氏距离:Contrastive Loss,Triplet Loss,Center...Cross-Entropy Loss (softmax loss) 交叉熵损失,也称为softmax损失,是深度学习中应用最广泛的损失函数之一。...但该损失追求的是类别的可分性,并没有显式最优化类间和类内距离,这启发了其他损失函数的出现。...以上损失在欧氏距离上优化,下面介绍在余弦距离上优化的损失函数。...AM-Softmax Loss将margin作用在余弦距离上,与之不同的是,ArcFace将margin作用在角度上,其损失函数如下, image.png ?
来源:DeepHub IMBA 本文约2300字,建议阅读5分钟 本文详细解释了GAN优化函数中的最小最大博弈和总损失函数是如何得到的。...本文详细解释了GAN优化函数中的最小最大博弈和总损失函数是如何得到的。...但是这不是模型的总损失函数。 为了理解这个最小-最大博弈,需要考虑如何衡量模型的性能,这样才可以通过反向传播来优化它。...生成器必须与判别器相反,找到 V(G,D) 的最小值。 总结两个表达式(判别器和生成器优化函数)并得到最后一个: 我们得到了优化函数。...总损失函数 上面我们已经给出了生成器和鉴别器的的损失公式,并给出了模型的优化函数。但是如何衡量模型的整体性能呢?
然而但是GAN今天仍然是一个广泛使用的模型) 本文详细解释了GAN优化函数中的最小最大博弈和总损失函数是如何得到的。...但是这不是模型的总损失函数。 为了理解这个最小-最大博弈,需要考虑如何衡量模型的性能,这样才可以通过反向传播来优化它。...生成器必须与判别器相反,找到 V(G,D) 的最小值。 总结两个表达式(判别器和生成器优化函数)并得到最后一个: 我们得到了优化函数。...总损失函数 上面我们已经给出了生成器和鉴别器的的损失公式,并给出了模型的优化函数。但是如何衡量模型的整体性能呢?...总结 GAN得优化函数(也叫最大-最小博弈)和总损失函数是不同的概念:最小-最大优化≠总损失 优化函数的起源来自二元交叉熵(这反过来是鉴别器损失),并从这也衍生出生成器损失函数。
26122560 写在前面 image.png Activation Function Sigmoid 最开始接触 ANN 的时候,大家听说的 Activation Function 应该还都是 Sigmoid 函数...ReLU除了具有Sigmoid函数大部分的优点外,还有 image.png LReLU、PReLU 为了解决dying ReLU的问题,有学者提出了LReLU(Leaky Rectified Linear...image.png Regularization 与 Weight Decay image.png Regularization 的理解 image.png ?
文章目录 sklearn learn sklearn learn # -*- coding:utf-8 -*- # /usr/bin/python impor...
其中使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?以下是本文的内容。...交叉熵损失+Sigmoid改进收敛速度 Sigmoid的函数特性导致反向传播算法收敛速度慢的问题,那么如何改进呢?换掉Sigmoid?这当然是一种选择。...另一种常见的选择是用交叉熵损失函数来代替均方差损失函数。每个样本的交叉熵损失函数的形式: ? 其中,▪为向量内积。...通常情况下,如果我们使用了sigmoid激活函数,交叉熵损失函数肯定比均方差损失函数好用。...梯度爆炸or消失与ReLU 学习DNN,大家一定听说过梯度爆炸和梯度消失两个词。尤其是梯度消失,是限制DNN与深度学习的一个关键障碍,目前也没有完全攻克。 什么是梯度爆炸和梯度消失呢?
领取专属 10元无门槛券
手把手带您无忧上云