1 前言 基于keras的双层LSTM网络和双向LSTM网络中,都会用到 LSTM层,主要参数如下: LSTM(units,input_shape,return_sequences=False) units...: 取值为True,表示每个时间步的值都返回;取值为False,表示只返回最后一个时间步的取值 本文以MNIST手写数字分类为例,讲解双层LSTM网络和双向LSTM网络的实现。...笔者工作空间如下: 代码资源见–> 双隐层LSTM和双向LSTM 2 双层LSTM网络 双层LSTM网络结构 DoubleLSTM.py from tensorflow.examples.tutorials.mnist...只有最后一个节点的输出值会返回,因此输出尺寸为 (None, 32) 训练结果: Epoch 13/15 - 17s - loss: 0.0684 - acc: 0.9796 - val_loss...层设置了 return_sequences=False,只有最后一个节点的输出值会返回,每层LSTM返回64维向量,两层合并共128维,因此输出尺寸为 (None, 128) 训练结果: Epoch
不同于前馈神经网络,RNN 可以利用内部的记忆来处理任意时序的输入序列,即不仅学习当前时刻的信息,也会依赖之前的序列信息,所以在做语音识别、语言翻译等等有很大的优势。...时刻有误差 ,这里的 为真实值, 为预测值。那么整个时间长度 ,我们有 ,我们的目的就是更新所有的参数 和 使 最小。...由此一般 RNN 理论介绍到此,想具体了解的可以查阅相关论文。 3 LSTM底层理论介绍 为了更好的捕获时序中间隔较大的依赖关系,基于门控制的长短记忆网络(LSTM)诞生了!...为了做对比实验,我们还会选择之前时序文章所对应的实际销量数据!我们将基于 keras 模块构建自己的 LSTM 网络进行时序预测。...LSTM 预测理论跟 ARIMA 也是有区别的,LSTM 主要是基于窗口滑动取数据训练来预测滞后数据,其中的 cell 机制会由于权重共享原因减少一些参数;ARIMA 模型是根据自回归理论,建立与自己过去有关的模型
云开发是云原生一体化开发环境和工具平台,提供高可用、自动弹性扩缩的后端云服务,可用于云端一体化开发多种端应用
许多投资者都渴望知道股票市场的未来情况。良好和有效的股票市场预测系统通过提供股票市场未来走向等支持性信息,帮助交易员、投资者和分析师。本文提出了一种基于RNN和LSTM的股票市场指数预测方法。...RNN已被证明是处理序列数据的最强大的模型之一。LSTM是最成功的RNNs架构之一。LSTM引入了记忆单元,它是一种计算单元,取代了网络隐含层中的传统人工神经元。...利用这些记忆单元,网络能够有效地将记忆关联起来,并能及时远程输入,从而适应随时间动态掌握数据结构,具有较高的预测能力。 LSTM ? 我们将从单个时间步骤实现LSTM单元。...训练神经网络:在这一阶段,将数据输入神经网络进行随机偏差和权值的预测训练。...Adam优化器结合了其他两个优化器的优点:ADAgrad和RMSprop。 ADAgrad优化器实际上为每个参数和每个时间步骤使用不同的学习率。
既然是时间序列预测,我们最关心的是预测值在时间维度上的走势如何,那我们只要最后一列volume和第一列date这两列就好了。...的,因为lstm时间序列不像别的回归一个x,另一个值y,lstm的x和y全是一组数据产生的,也就是它自己和自己比。...注意维度,维度这样设置一是归一化需要,二是输入网络的要求。...最后一行的操作相当于是一个100个数值的数值,我填了前面70个,因为前面70个是我训练集的预测值,后面30为空。...绿色是测试的预测值,蓝色的是原始数据,和前面说的一样,趋势大概相同,但是峰值有误差。还有一个问题就是博主这里的代码是将预测值提前一天画的。
(Long Short-Term Memory)是长短期记忆网络 data_csv = pd.read_csv('C:/Users/DZF/Desktop/LSTM/data.csv',usecols=...list,把函数f依次作用在list的每个元素上,得到一个新的object并返回 ''' 接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量, 比如我们希望通过前两个月的流量来预测当月的流量...同时我们需要将我们的数据集分为训练集和测试 集,通过测试集的效果来测试模型的性能,这里我们简单的将前面几年的数据作为 训练集,后面两年的数据作为测试集。...dataY) #np.array构建数组 data_X, data_Y = create_dataset(dataset) #data_X: 2*142 data_Y: 1*142 #划分训练集和测试集...,num_layers) #LSTM 网络 self.reg = nn.Linear(hidden_size,output_size) #Linear 函数继承于nn.Module
接着我们看看LSTM网络更复杂的运用,那就是用来预测气温。...为了比较不同网络模型的效果,我们将分别构造几个不同类别的网络然后分别看看他们的预测效果,首先我们先建立前面几章讲过的全连接网络看看效果如何: from keras.models import Sequential...0.4和0.3之间,也就是说网络预测的精确度还不如人的直觉好。...: 从上图实现和点线的发展趋势不断重合,也就是网络对校验数据的识别正确率跟训练数据的正确率一样不断提高,因此过度拟合的现象消失了。...至此我们就把LSTM和GRU这两种反复性网络在具体实例上的应用展示完成,如果你运行过上面代码会发现,普通CPU的机子运行代码起来效率很慢,它再次证明了算力和数据是人工智能中两道极难迈过去的坎儿。
长短期记忆模型(LSTM)是一类典型的递归神经网络,它能够学习观察所得的序列。 这也使得它成为一种非常适合时间序列预测的网络结构。...LSTM存在一个问题,它会非常容易在训练数据上产生过拟合,从而影响他们的预测性能。...在本教程中,您将了解如何在LSTM网络中使用Dropout,并设计实验来检验它在时间序列预测任务上的效果。...完成本教程后,您将知道: 如何设计一个强大的测试工具来评估LSTM网络在时间序列预测上的表现。 如何设计,执行和分析在LSTM的输入权值上使用Dropout的结果。...具体来说,您学习到: 如何设计一个强大的测试工具来评估LSTM网络的时间序列预测性能。 针对时间序列预测问题,如何配置LSTM模型输入连接权重的Dropout。
在深度学习领域,长短期记忆网络(LSTM)以其出色的处理序列数据能力而备受瞩目。而深度LSTM作为LSTM的扩展形式,与普通LSTM在训练和效果上存在着一些显著的不同。...而深度LSTM增加了网络的层数,每增加一层就会引入更多的参数,这使得深度LSTM的计算量呈指数级增长,训练过程需要更多的时间和计算资源。...预测精度:在许多任务中,深度LSTM由于能够更好地捕捉数据中的复杂关系,往往可以达到更高的预测精度。...例如在时间序列预测中,深度LSTM可以更准确地预测未来的趋势和模式;在自然语言处理中,深度LSTM可以更准确地进行情感分析、命名实体识别等任务。...对不同类型数据的适应性:普通LSTM对于一些简单的序列数据或短期依赖关系较强的数据可能已经能够很好地处理。而深度LSTM更适合处理具有高度复杂性和长期依赖关系的数据,如视频数据、大规模文本数据等。
我们是否可以通过气象图来预测降水量呢?今天我们来使用CNN和LSTM进行一个有趣的实验。...定义问题 最原始的也是最简单的预测视频中的下一帧的内容的方法是使用CNN和LSTM。我们是否可以将预测天气雷达的下一个捕获信号的问题简化为预测视频中的下一帧的问题呢(雷达的讯号也是图像序列)。...所以我收集了一些图像序列,并开始实验各种架构的卷积LSTM神经网络。每个训练数据点由36个连续的雷达原始文件(对应于间隔5分钟的3小时的测量)组成。然后将每个数据点分成两部分。...为什么是卷积LSTM 如果你对神经网络和深度学习有点熟悉,你可能知道卷积神经网络(CNN)在涉及分析或发现图像中的特定特征和形状的任务上表现非常好。...这是模型可以在合理的时间内训练的最高分辨率,并且在过程中不会有任何的内存溢出问题。然后将每个序列分成两个相等的部分。前18帧用作“特征”(x),后18帧是神经网络试图预测的帧(y)(给定前18帧)。
使用神经网络解决时间序列预测问题的好处是网络可以在获得新数据时对权重进行更新。 在本教程中,你将学习如何使用新数据更新长短期记忆(LTCM)递归神经网络。...在学完本教程后,你将懂得: 如何用新数据更新 LSTM 神经网络。 如何开发出用于评测不同更新方案的测试工具。 如何解释用新数据更新LSTM 网络得出的结果。 让我们开始吧。 ?...训练数据集和测试数据集的结构将对此进行模拟。我们将一步生成所有的预测。 最后,收集所有测试数据集的预测,计算误差值总结该模型的预测能力。...这样做的原因是LSTM网络的初始条件随机生成,得出的结果会大不相同,每进行一次试验,给定配置都会受到训练。 让我们开始进行试验吧。...这个试验预计可以为比较更新模型和固定模型提供一个有趣的角度。 总 结 在本教程中,你学习了当在 Python 中进行时间序列预测时如何在获得新数据时更新 LSTM 网络。
在上一篇文章结尾,我们提到了,与使用SGD(随机梯度下降)和冲量训练的模型相比,L-BFGS方法产生不同误差的解决方法。...所以,有一个问题就是什么样的解决方法泛化能力最强,而且如果它们关注的方向不同,那么对于单个方法它们又是如何做到泛化能力不同的。...在训练数据集上,两种方法的精度都能够达到100%,并且只要训练误差为零就终止训练。...这说得通,实际上这就是一个非常流行的模式;其次,在同一部电影中,吸血鬼和狼人很可能会同时出现。...总的来说,我们应该小心解释,因为手头的数据是有限的,然而结果证实只要有合适的初始化和超参数(hyper-parameters),使用一阶和二阶方法都能得到很好的答案。
所有循环神经网络都具有神经网络的重复模块链的形式。在标准 RNN 中,此重复模块将具有非常简单的结构,例如单个 tanh 层。 LSTM 也有这种链状结构,但重复模块有不同的结构。...Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。...选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。 下面是数据集的一个片段。...将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。...np.reshape(X_train, (shape\[0\], 1, shape\[1\])) 模型训练和预测 该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量
我还将解决不同时间序列模型的数据泄漏和数据准备等问题,并且对常见的三种时间序列预测进行对比测试。 介绍 时间序列预测是一个经常被研究的话题,我们这里使用使用两个太阳能电站的数据,研究其规律进行建模。...建模 下面我们开始使用三种不同的时间序列算法:SARIMA、XGBoost和CNN-LSTM,进行建模并比较 对于所有三个模型,都使用预测下一个数据点进行预测。...SACF和SPACF可以通过从原始数据中取季节差(m)来计算,在本例中为24,因为在ACF图中有一个明显的24小时的季节效应。 根据我们的直觉,超参数的起点可以从ACF和PACF图中推导出来。...CNN是一种前馈神经网络,在图像处理和自然语言处理方面表现出了良好的性能。它还可以有效地应用于时间序列数据的预测。...在将数据分解为训练数据和测试数据之后,将训练数据分解为训练数据和验证数据集。在所有训练数据(包括验证数据)的每次迭代之后,模型可以进一步使用这一点来评估模型的性能。
时间序列预测(二)基于LSTM的销售额预测 O:小H,Prophet只根据时间趋势去预测,会不会不太准啊 小H:你这了解的还挺全面,确实,销售额虽然很大程度依赖于时间趋势,但也会和其他因素有关。...如果忽略这些因素可能造成预测结果不够准确 小O:那有没有什么办法把这些因素也加进去呢? 小H:那尝试下LSTM吧~ LSTM是一个循环神经网络,能够学习长期依赖。...理论我是不擅长的,有想深入了解的可在网上找相关资料学习,这里只是介绍如何利用LSTM预测销售额,在训练时既考虑时间趋势又考虑其他因素。...即第0个训练样本X为原始数据df中[0-29]的所有数据,第0个训练Y为原始数据df中第30个样本的y值 # 定义LSTM def build_model(optimizer): grid_model...如果在做预测的时候,不仅有时间序列数据,还有获得额外的因素,可以尝试使用LSTM进行预测~ 共勉~ 参考资料 [1] 使用 LSTM 对销售额预测: https://blog.csdn.net/weixin
RNN 递归神经网络(RNN)相对于MLP和CNN的主要优点是,它能够处理序列数据,在传统神经网络或卷积神经网络中,样本(sample)输入与输出是没有“顺序”概念的,可以理解为,如果把输入序列和输出序列重新排布...RNN则不同,它保证了输入和输出至少有一端是有序列特征的。...传统的神经网络结构可以归纳会下图左边的形式,隐藏层h的状态是不保存的,而在RNN中,每一个时间步的隐藏层状态都是由上一层的输入和上一个时间的状态共同计算得到。...遗忘门类似于一个过滤器,决定上一个时间步的信元状态C能否通过 输入门:负责根据输入值和遗忘门的输出,来更新信元状态C 输出们:更新隐藏单元的值 当然,LSTM的形式也是存在很多变式的,不同的变式在大部分任务上效果都差不多...这里采用LSTM来进行时间序列预测,结构为: 训练数据生成—>隐藏输入层—>LSTM神经层—>隐藏输出层(全连接层)—>结果 当然,也可以根据任务增加隐藏层,LSTM层以及全连接层的数量。
介绍 这篇文章里,我们使用python + numpy实现一个线性分类器,使用mnist的数据集对线性分类器进行训练与预测。文章会详细介绍线性分类器的实现细节包括,前向传播,反向传播实现。...,首先将输入拉平为一个向量,我们使用一个权重矩阵乘以该输入得到输出向量,使用softmax得到 不同类别的分数,最终挑选分数最大的类别作为当前输入所属类别的预测结果。...(这里就就是小标)返回one-hot向量 compute_llk: 是交叉熵损失函数的实现,其中EPS为为了避免Y_pred为0 导致log求值返回-inf,这里的axis=-1和上面的类似,表示对一行内的所有列进行求和...train_algo: 1> 首先对输入x执行预测函数predict,输出y_pred 2> 根据上面dloss的公式,计算dz 3> 使用np.outer函数,根据链式法则,计算损失对...4> 计算损失对偏置项的导数gradB 5> 更新权重和偏置 3>简单推导: image.png image.png
一、实验介绍 本实验实现了基于 LSTM 的语言模型训练及测试 基于门控的循环神经网络(Gated RNN) 门控循环单元(GRU) 门控循环单元(GRU)具有比传统循环神经网络更少的门控单元...GRU通过重置门和更新门来控制信息的流动,从而改善了传统循环神经网络中的长期依赖问题。 长短期记忆网络(LSTM) 长短期记忆网络(LSTM)是另一种常用的门控循环神经网络结构。...()函数用于断开与计算图的连接,并清除梯度信息) 对于其他类型的模型(如nn.LSTM或自定义模型),遍历state中的每个元素,将其梯度信息清零 将输入数据X和标签Y转移到指定的计算设备上 使用神经网络模型...net和当前的隐藏状态state进行前向传播,得到预测值y_hat和更新后的隐藏状态state 计算损失函数loss对于预测值y_hat和标签y的损失,并取均值 如果updater是torch.optim.Optimizer...(time step)的值分别为32,25 加载的训练数据迭代器和词汇表 vocab_size 是词汇表的大小,num_hiddens 是 LSTM 隐藏层中的隐藏单元数量,num_epochs
https://blog.csdn.net/u010105969/article/details/53285158 我们在开发中一般下载图片会使用SDWebImage这个第三方,可在不同的网络下如果后台返回的图片有小图和大图且有...:不同的网络下下载不同的图片的需求,我们需要做相应的判断: AFNetworkReachabilityManager * manager = [AFNetworkReachabilityManagersharedManager...case2: NSLog(@"3G"); case3: NSLog(@"4G"); case5: NSLog(@"wifi"); default: NSLog(@"无网络...topicModel.image1] placeholderImage:[UIImage imageNamed:@""]]; }else{ // 如果没有大图需要进行下载 // 需要判断当前网络的状态...// 如果是2G网络下载下图,如果是3G/4G网络下载大图 if (type == 1) { [_picV sd_setImageWithURL:[NSURL
洞察 腾讯核心技术
剖析业界实践案例