首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【MATLAB】进阶绘图 ( Bar 条形图 | bar 函数 | bar3 函数 | Bar 条形图样式 | 堆叠条形图 | 水平条形图 | barh 函数 )

    文章目录 一、Bar 条形图 1、bar 函数 2、矩阵数据表示 3、bar 函数代码示例 二、Bar 条形图样式 1、bar 函数样式 2、堆叠条形图示例 三、水平条形图 1、barh 函数 2...、代码示例 一、Bar 条形图 ---- 1、bar 函数 bar 函数参考文档 : https://ww2.mathworks.cn/help/matlab/ref/bar.html 2、矩阵数据表示...x 值是一个矩阵 : x = \begin{bmatrix} 1 & 2 & 5 & 4 & 8 \end{bmatrix} 代码表示例 : % 条形图的数值列表 x = [1 , 2 , 5 , 4...在 bar 函数的数据后面 , 可以使用字符串指定一个条形图样式 , 条形图的四种样式如下 : 2、堆叠条形图示例 % 条形图的数值列表 x = [1, 2, 5, 4, 8]; % 数值列表 ,...1、barh 函数 与 bar 用法类似 , 使用 barh 函数绘制的条形图是水平条形图 ; 2、代码示例 代码示例 : % 条形图的数值列表 x = [1, 2, 5, 4, 8]; % 数值列表

    5.8K31

    matplotlib动画制作(2)—气泡图与条形图

    颜色标识 2)气泡循环 3)细节调整(年份添加、坐标控制) 1、颜色标识:创建100种颜色标识产品 import pandas as pd import numpy as np import matplotlib.pyplot...as plt from matplotlib.animation import FuncAnimation import random #使用random创建100种颜色 def create_color...as plt from matplotlib.animation import FuncAnimation import random #使用random创建100种颜色 def create_color...2.2 动态条形图 以下数据集记录了A-N国1995-2015人口变化,绘制时间段内的人口变化柱状图: 考虑到动态变化存在柱状图互相交换问题,为了优化展示效果,采用pandas_alive库进行绘制...这里为10,表示只显示前10的国家人口 动态条形图 如果要求为柱状图,添加orientation参数即可 sel_df.plot_animated(filename = r"C:\Users\28798

    21210

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    但实际上 Matplotlib 有更好的方法,我们可以用不同的透明度叠加多个直方图。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。在下面的堆叠条形图中,我们比较了工作日的服务器负载。...通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots

    2.4K60

    一文掌握Pandas可视化图表

    import pandas as pd import numpy as np import matplotlib.pyplot as plt # 设置 可视化风格 plt.style.use('tableau-colorblind10...# 柱状图bar df.plot.bar() (这里不做展示,前面案例中有) 此外我们还可以绘制堆叠柱状图,通过设置参数stacked来搞定 # 堆叠柱状图 df.plot.bar(stacked=True...) 柱状图多子图 # 柱状图多子图 df.plot.bar(subplots=True, rot=0) 条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上

    8.1K50

    Pandas数据可视化

    , 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间,所以它们对歪斜的数据的处理不是很好...[reviews['price'] < 100].sample(100).plot.scatter(x='price', y='points’) 调整图形大小,字体大小,由于pandas的绘图功能是对Matplotlib...绘图功能的封装,所以很多参数pandas 和 matplotlib都一样 reviews[reviews['price'] < 100].sample(100).plot.scatter(x='price...一:对数据进行采样 二:hexplot(蜂巢图) hexplot hexplot将数据点聚合为六边形,然后根据其内的值为这些六边形上色: 上图x轴坐标缺失,属于bug,可以通过调用matplotlib的...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是

    12610

    5 种快速易用的 Python Matplotlib 数据可视化方法

    但实际上 Matplotlib 有更好的方法,我们可以用不同的透明度叠加多个直方图。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。在下面的堆叠条形图中,我们比较了工作日的服务器负载。...通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots

    2K40

    原来使用 Pandas 绘制图表也这么惊艳

    Pandas 的 plot() 方法 Pandas 附带了一些绘图功能,底层都是基于 Matplotlib 库的,也就是说,由 Pandas 库创建的任何绘图都是 Matplotlib 对象。...同时 .plot 也是 Pandas DataFrame 和 series 对象的属性,提供了 Matplotlib 可用的一小部分绘图功能。...%matplotlib 内联魔法命令也被添加到代码中,以确保绘制的数字正确显示在笔记本单元格中: import pandas as pd import numpy as np import matplotlib.pyplot...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...则不同的颜色可以区分不同的面积图: df.plot(kind='area', figsize=(9,6)) Output: Pandas plot() 方法默认创建堆积面积图,通过将 False 分配给堆叠参数来取消堆叠面积图是一项常见任务

    4.6K50

    5个快速而简单的数据可视化方法和Python代码

    我们首先使用别名“plt”导入Matplotlib的pyplot。为了创建一个新的plot图,我们将其称为“pl .subplot()”。...我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。...其代码遵循与分组条形图相同的样式。我们循环遍历每一组,但是这次我们在旧的条形图上绘图,而不是在它们旁边画新条形图。 ? 常规条形图 ? 分组条形图 ?...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots

    2.1K10
    领券