首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Power Query批量导入Excel文件,和导入文本有一点儿不同

小勤:大海,你上次说PowerQuery可以批量导入Excel文件,我参考你那个批量导入文本文件的方法试了一下,不行啊。 大海:呵呵。我就知道你会有问题。 小勤:知道会有问题还不早说!...你看,我的文件也是一样很规范的啊! 大海:你记得你昨天做文本文件导入的时候,点击展开数据那里写着什么吗? 小勤:你说的是这个?Binary?二进制? 大海:对的。问题就在这里。...我们还是从头开始吧,这样可以再熟悉一下全部过程,并且可以和批量导入文本文件的方法进行比较,慢慢体会其中的过程和原理。...第五步:展开数据列表 这将列出你所有工作簿里的所有表,如果某些工作簿里有多张表的话,都会显示在这里: 第六步:继续展开表数据 数据都出来啦! 小勤:是啊!真牛!不过,好像比文本那个还乱呢。...我知道了,其实跟文本文件导入的差别就是要将二进制的内容用Excel.Workbook函数解析出来,然后在解析出来的内容里展开数据。对吗? 大海:真聪明。这样理解就行了。

2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Matplotlib常用画图的简单使用记录

    目录 绘制二维散点图 绘制三维散点图 每个点加标签 坐标取消科学计数法 绘制二维散点图 import numpy as np import matplotlib.pyplot as plt x = np.array...x = np.array([1,2,3]) y = np.array([1,2,3]) z = np.array([1,2,3]) # 绘制散点图 fig = plt.figure() ax =...——black m——magenta r——red w——white y——yellow 图例位置(对应参数loc) 还想再调整,可以使用参数bbox_to_anchor=(1.3, 1.0) 每个点加标签...两种方式可以实现: text: 称为无指向型标注,标注仅仅包含注释的文本内容; annotate: 称为指向型注释,标注不仅包含注释的文本内容还包含箭头指向,能够突显细节; text方式: import...'headlength': 5, # 箭头头部的长度 'width': 4, # 箭头尾部的宽度 'facecolor': 'r', # 箭头的颜色 'shrink': 0.1, # 从箭尾到标注文本内容开始两端空隙长度

    92430

    Python 数据可视化之密度散点图 Density Scatter Plot

    密度散点图(Density Scatter Plot),也称为密度点图或核密度估计散点图,是一种数据可视化技术,主要用于展示大量数据点在二维平面上的分布情况。...密度散点图涉及的基础概念: 散点图(Scatter Plot):基础的二维数据表示形式,用于展示两个变量之间的关系。每个数据点的位置由这两个变量的值决定。...颜色编码:在密度散点图中,不同密度区域通常会使用不同颜色或深浅来表示,颜色深浅代表了该区域内数据点的密集程度。 可视化原理: 数据映射:首先将每个数据点映射到二维平面上。...这与普通散点图相同,这一步骤确定了每个点在图上的位置。 密度估计:对所有数据点应用核密度估计算法。这一步骤是通过在每个数据点周围放置一个“核”,然后对整个数据集覆盖区域内所有核进行求和来完成的。...如果某个区域有较高的密度,那么这可能是一个数据聚类的中心。 模型预测结果分析:密度散点图非常适合用于可视化观测值和拟合值的情况,能观察到模型预测的潜在偏移与合理性。

    2.1K00

    可视化技能之Matplotlib(上)|可视化系列01

    c='#BA5C25'设置点颜色,c赋值为一个数组可以做出每个点一个颜色的效果。...散点图参数示例 ax.plot(x,y,'o')也可以画散点图,ax.plot()核心是绘制坐标系下的点和点之间的连线的,当突出点的大小而省略线时,就是散点图了,同样突出线就变成了折线图。...通过这个返回值可以对柱进行一些个性化的处理,另外的应用就是根据返回柱的属性给每个柱标上文本标签。...三维及科学可视化 三维可视化和科学可视化是Matplotlib特别擅长的领域,人类作为三维生物,对三维的图像有一定的偏好,扁平化和三维各有优势,各有不同的应用场合,能画好二维可视化图也该会画三维的图表,...通过以上实践可以看到的Matplotlib可视化语法的特点是绘图对象和标签标题等元素有一定独立性,且有不同层级的接口可以用来微调元素,例如设置标题就有多种写法 ,Matplotlib不同于ggplot2

    1.7K41

    动态曲线图(linechart)--Matplotlib绘制

    引言 动态曲线图不同于动态气泡图,它可以查看部分指标在一段时间内的变化趋势,本期推文将推出动态曲线图的 Matplotlib 绘制过程,核心过程为 折线图 和 散点图 的绘制,详细过程如下: 02....s = 280,lw = 2.5,zorder =4)#散点图 散点图的绘制则需知道我们只需要绘制最后一个散点,即获取最后一个数据,因此scatter的x,y均有[-1]的索引,当然,我们需在之前使用tolist...()方法转变成数据列表形式,填充颜色 color、散点边框颜色 edgecolor、散点大小 s、和线宽 lw 均可根据自己需要进行定制化设置。...这里需要注意的是zorder属性的设置,这里设置zorder=4,表示散点图绘制在折线图之后,即散点图压在折线图之上,使绘图更加美观。...总结 Matplotlib绘制动态曲线图较动态气泡图而言,绘制过程较为简单,主要就是折线图和散点图的配合使用,其他的就是图表属性的定制化设置了,个人能力有限,发现错误的同学可以留言告知啊,下期我们将继续推出

    2.2K40

    Hans Rosling Charts Matplotlib 绘制

    (2)第 34 行设置了x轴的刻度比例,这里这样设置是为了更好的展示某些年份的数据。但想要完美解决,还需要要解决如下问题:matplotlib设置刻度间隔相等,但不同间隔表示不同的值,如下: ?...(3)第 46-59 行为添加部分解释文本,设置 transform = ax.transAxes,是文本位置相对于 Axes 进行更改,不随数据更改而改变,建议在设置固定位置文本内容时,可采用此设置。...(5)第 63-78 行为对多类别散点图图例的制作(多数类似教程忽略了图例的添加,导致绘制的图表不够完善),但随着Matplotlib 3.1版本的发布,PathCollection新增加一个方法legend_elements...(),实现以自动方式获取散点图的句柄和标签,极大简化了散点图图例的创建,下面给出样例,感兴趣的也可以前往Matplotlib官网查看,本例子没有采用最新方法。...个人知识点有限,难免会有出错的地方,如发现请指出,我会第一时间回复并进行更正。

    3K30

    KNN算法实战-改进约会网站配对效果

    kNN实战之改进约会网站配对效果 引言 简单的说,KNN算法采用测量不同特征值之间的距离方法进行分类。...算法流程 收集数据:提供文本文件 准备数据:使用python解析文本文件 分析数据:使用matplotlib画二维图 训练数据: 测试算法:使用二丫提供的部分数据作为测试集 部署算法:产生简单的命令行程序...准备数据:从文本文件中解析数据 数据保存在datingTestSet.txt中,每个样本数据占据一行,总共1000行,样本主要包含以下三个特征: 每年获得的飞行里程 玩游戏所消耗的时间百分比 每周消耗的冰激凌公斤数...分析数据:使用matplotlib创建算点图 首先使用matplotlib制作原始数据的散点图,在python命令行中输入一下命令: >>> import matplotlib >>> import matplotlib.pyplot...没有类别标签的约会数据散点图,难以辨识图中的点属于哪一类(“玩游戏所占时间百分比”和“每周消耗的冰激凌公斤数”) datingDataMat的第二列和第三列分别表示特征值的“玩游戏所占时间百分比”和“每周消耗的冰激凌公斤数

    1.3K100

    动态气泡图绘制,超简单~~

    本推文绘制动态图的完整代码如下: 知识点讲解: (1)第 12 行在 matplotlib 绘制动态图表过程中非常重要,一般设置较大值,如2**64 或者 2**128,其目的就是为了消除动态图过大,导致出图不完整问题...但想要完美解决,还需要要解决如下问题:matplotlib设置刻度间隔相等,但不同间隔表示不同的值,如下: 希望有知道解决方法的小伙伴可以留言告知啊,感谢!!!...(5)第 63-78 行为对多类别散点图图例的制作(多数类似教程忽略了图例的添加,导致绘制的图表不够完善),但随着Matplotlib 3.1版本的发布,PathCollection新增加一个方法legend_elements...(),实现以自动方式获取散点图的句柄和标签,极大简化了散点图图例的创建,下面给出样例,感兴趣的也可以前往Matplotlib官网查看,本例子没有采用最新方法。...个人知识点有限,难免会有出错的地方,如发现请指出,我会第一时间回复并进行更正。

    3.6K20

    Matplotlib绘制动态曲线图,超简单!!

    ,要达到上述效果除了核心的Matplotlib绘图外,其他工具和上篇推文 Hans Rosling Charts Matplotlib 绘制 所使用的工具一样啊。...引言 动态曲线图不同于动态气泡图,它可以查看部分指标在一段时间内的变化趋势,本期推文将推出动态曲线图的 Matplotlib 绘制过程,核心过程为 折线图 和 散点图 的绘制,详细过程如下: 02....s = 280,lw = 2.5,zorder =4)#散点图 散点图的绘制则需知道我们只需要绘制最后一个散点,即获取最后一个数据,因此scatter的x,y均有[-1]的索引,当然,我们需在之前使用tolist...()方法转变成数据列表形式,填充颜色 color、散点边框颜色 edgecolor、散点大小 s、和线宽 lw 均可根据自己需要进行定制化设置。...总结 Matplotlib绘制动态曲线图较动态气泡图而言,绘制过程较为简单,主要就是折线图和散点图的配合使用,其他的就是图表属性的定制化设置了,个人能力有限,发现错误的同学可以留言告知哈~~

    1.6K30

    Python中最常用的 14 种数据可视化类型的概念与代码

    它用于处理来自较大数据集的不同数据组。它的每个折线图都向下阴影到 x 轴。它让每一组彼此堆叠。...在饼图中,对于每个切片,其每个弧长都与其代表的数量成正比。中心角和面积也是成比例的。它以切片馅饼命名。饼图广泛得应用在各个领域,用于表示不同分类的占比情况,通过弧度大小来对比各种分类。...这些有两种类型: 威尔金森点图 在这个点图中,局部位移用于防止图上的点重叠。 克利夫兰点图 这是一个类似散点图的图表,在一个维度中垂直显示数据。...散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。...,散点图分为不同的类型。

    9.6K20

    【Python篇】matplotlib超详细教程-由入门到精通(上篇)

    散点图 (Scatter Plot) 散点图用于展示数据的分布情况。...4.3 创建子图布局 当我们有多组数据想要展示在同一个窗口时,可以使用子图布局。在 matplotlib 中,子图功能允许我们将同一个图表窗口划分为多个区域,每个区域展示不同的数据。...5.2 标注与注释 有时候我们需要对图表中的某些点进行标注或注释,突出显示特定数据点。matplotlib 提供了 annotate() 函数,用于在图表上添加文本。...xy:指定要标注的点的坐标。 xytext:指定注释文本的位置。 arrowprops:设置箭头的样式。...以上就是关于【Python篇】matplotlib超详细教程-由入门到精通(上篇)的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

    1.4K10

    seaborn的介绍

    此特定图显示了提示数据集中五个变量之间的关系。三个是数字,两个是绝对的。两个数值变量(total_bill和tip)确定轴上每个点的位置,第三个(size)确定每个点的大小。...一个分类变量将数据集拆分为两个不同的轴(面),另一个确定每个点的颜色和形状。 所有这一切都是通过单次调用seaborn函数完成的relplot()。...虽然散点图是一种非常有效的方法,但是一个变量代表时间度量的关系更好地用线表示。该relplot()函数有一个方便的kind参数,可让您轻松切换到此替代表示: ?...这些表示在其底层数据的表示中提供不同级别的粒度。在最精细的级别,您可能希望通过绘制散点图来查看每个观察,该散点图调整沿分类轴的点的位置,以使它们不重叠: ?...我们上面使用的“fmri”数据集说明了整齐的时间序列数据集如何在不同的行中包含每个时间点: 学科 时间点 事件 区域 信号 0 S13 18 STIM 顶叶 -0.017552 1 S5 14 STIM

    4K20

    可视化系列:使用 Python的seaborn 包做出波士顿矩阵图,改善店铺销售水平

    在零售领域中已经有许多被证明有效的统计指标,今天我们将使用其中2个指标: 客单价:能反映每个顾客的质量,这其实与大环境因素(店铺位置,商品组合等)有关,也能反映销售能力。...---- 散点图加点料 有2个数值指标,刚好对应二维图表的xy轴,于是很容易想到的是使用散点图: 对于 seaborn 来说,散点图是数据关系可视化的一种,rel 实际是 relationships...的缩写 relplot 是一个图形级别的函数(意味着我们能使用他做出多种或一次性多个图表的复合图表),用他能做出多种不同的图像,默认情况下是散点图(参数 kind='scatter') 现在能大致看出这些销售员的能力位置...x 轴的哪个点 行3:plt.axhline 画出横线(h 是 horizontal 的缩写),自然地,需要在第一个参数中指定该线穿过 y 轴的哪个点 现在还缺点东西,在图上看不出那些点是哪位员工。...前2个参数分别是 x,y 的位置,第3个参数是文本内容 这就是四象限图,他有如下特点: 按2个指标以及指标的均值线,把平面划分出4个代表不同能力的区域 一般情况尽可能使得2个指标越大表示越有优势,这样右上区域就是优秀水平

    1.5K20

    Python数据可视化的10种技能

    我来简单介绍下这四种关系的特点: 比较:比较数据间各类别的关系,或者是它们随着时间的变化趋势,比如折线图; 联系:查看两个或两个以上变量之间的关系,比如散点图; 构成:每个部分占整体的百分比,或者是随着时间的百分比变化...当然 kind 还可以取其他值,这个我在后面的视图中会讲到,不同的 kind 代表不同的视图绘制方式。 好了,让我们来模拟下,假设我们的数据是随机的 1000 个点。...其实你能看到 Matplotlib 和 Seaborn 的视图呈现还是有差别的。Matplotlib 默认情况下呈现出来的是个长方形。...因为蜘蛛图是一个圆形,你需要计算每个坐标的角度,然后对这些数值进行设置。当画完最后一个点后,需要与第一个点进行连线。...二元变量分布 如果我们想要看两个变量之间的关系,就需要用到二元变量分布。当然二元变量分布有多种呈现方式,开头给你介绍的散点图就是一种二元变量分布。

    2.8K20

    10个实用的数据可视化的图表总结

    我已经展示了用于查找 sepal_width 和 sepal_length 列的密度的图。 如果仔细观察图表,我们会发现总面积被分成了无数个六边形。每个六边形覆盖特定区域。我们注意到六边形有颜色变化。...这是为了找到两个数值变量的密度。例如,下面的图显示了在每个阴影区域有多少数据点。...点图是一种通过上图中显示的点的位置来表示数值变量集中趋势的方法,误差条表示变量的不确定性(置信区间)[4]。绘制线图是为了比较不同分类值的数值变量的变异性 [4]。...我们还可以绘制多个点图。 8、分簇散点图(Swarm plot) Swarm plot 是另一个受“beeswarm”启发的有趣图表。通过此图我们可以轻松了解不同的分类值如何沿数值轴分布 [5]。...10、词云(Word Cloud) 词云图的想法非常简单。假设我们有一组文本文档。单词有很多,有些是经常出现的,有些是很少出现的。

    2.4K50

    Python可视化——3D绘图解决方案pyecharts、matplotlib、openpyxl

    这篇博客将介绍python中可视化比较棒的3D绘图包,pyecharts、matplotlib、openpyxl。基本的条形图、散点图、饼图、地图都有比较成熟的支持。...,也支持局部放大、数据集、拖动、富文本图;也支持点、线、流、图GL图 官网demo地址:https://gallery.pyecharts.org 热力图、图表效果如下: 3D球体示例如下:...3D条形图、散点图、曲面图示例如下: 3D表面、地图示例如下: 点、线、流GL图如下: 2. matplotlib 支持以下图表: 在 3D 绘图上绘制 2D 数据 3D条形图演 在不同平面上创建二维条形图...绘图 3D散点图 3D 茎 3D 图作为子图 3D 表面(颜色图) 3D表面(纯色) 3D表面(棋盘) 具有极坐标的 3D 表面 3D 文本注释 三角形 3D 等高线图 三角形 3D 填充等高线图...线框图 matplotlib.org/stable/tuto… 3. openpyxl openpyxl:excel表格处理工具,可以根据数据绘制3D图表; 支持以下图表: 面积图 二维面积图

    3.2K00

    数据科学 IPython 笔记本 8.5 简单的散点图

    另一种常用的绘图类型是简单的散点图,是折线图的近亲。这里的点并不由线连接,而是单独表示的点,圆或其他形状。...正如你可以指定选项,例如'-','--'`来控制线条样式,标记样式有自己的一组短字符串代码。完整的可用符号列表,可以在plt.plot``的文档中找到,或者在Matplotlib 的在线文档中看到。...与plt.plot的主要区别是,它可用于创建散点图,其中每个单独的点的属性(大小,填充颜色,边缘颜色等)可以单独控制,或映射到数据。...:每个点的(x, y)位置对应于萼片的长度和宽度,该点的大小与花瓣宽度有关,并且颜色与花的特定种类有关。...原因是plt.scatter能够为每个点渲染不同的大小和/或颜色,因此渲染器必须执行单独构建每个点的额外工作。

    55820
    领券