首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python 绘图,我只用 Matplotlib

01 散点图 散点图显示两组数据的值,如图1-1所示。每个点的坐标位置由变量的值决定,并由一组不连接的点完成,用于观察两种变量的相关性。例如,身高—体重、温度—维度。 ?...图1-1 散点图示例 使用Matplotlib的scatter()函数绘制散点图,其中x和y是相同长度的数组序列。scatter()函数的一般用法为: ? 主要参数说明如下: x,y:数组。...示例:显示y=2x+1的图形 Matplotlib中最基础的模块是Pyplot, 下面从最简单的线图开始讲解。例如,有一组数据,还有一个拟合模型,通过编写代码来实现数据与模型结果的可视化。...使用Matplotlib的hist()函数绘制直方图,hist()函数的一般用法为: ? 主要参数说明如下: • bins:直方图中箱子 (bin) 的总个数。个数越多,条形带越紧密。...决定直方图y轴的取值是某个箱子中的元素的个数 (normed=False), 还是某个箱子中的元素的个数占总体的百分比 (normed=True)。 在介绍直方图之前,先来了解什么是正太分布。

1.2K20

文末送书 | Python绘图,我只用Matplotlib

散点图 散点图显示两组数据的值,如图1-1所示。每个点的坐标位置由变量的值决定,并由一组不连接的点完成,用于观察两种变量的相关性。例如,身高—体重、温度—维度。 ?...图1-1 散点图示例 使用Matplotlib的scatter()函数绘制散点图,其中x和y是相同长度的数组序列。scatter()函数的一般用法为: ? 主要参数说明如下: • x,y:数组。...示例:显示y=2x+1的图形 Matplotlib中最基础的模块是Pyplot, 下面从最简单的线图开始讲解。例如,有一组数据,还有一个拟合模型,通过编写代码来实现数据与模型结果的可视化。...使用Matplotlib的hist()函数绘制直方图,hist()函数的一般用法为: ? 主要参数说明如下: • bins:直方图中箱子 (bin) 的总个数。个数越多,条形带越紧密。...决定直方图y轴的取值是某个箱子中的元素的个数 (normed=False), 还是某个箱子中的元素的个数占总体的百分比 (normed=True)。 在介绍直方图之前,先来了解什么是正太分布。

1.5K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Seaborn 可视化

    Seaborn简介 Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。...Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。...创建直方图 密度图(核密度估计) 密度图是展示单变量分布的另一种方法,本质上是通过绘制每个数据点为中心的正态分布,然后消除重叠的图,使曲线下的面积为1来创建的  密度图是展示单变量分布的另一种方法,本质上是通过绘制每个数据点为中心的正态分布...,然后消除重叠的图,使曲线下的面积为1来创建的 计数图(条形图)  计数图和直方图很像,直方图通过对数据分组描述分布,计数图是对离散变量(分类变量)计数。  ...因此,箱子的高度在一定程度上反映了数据的波动程度 上下边缘则代表了该组数据的最大值和最小值 有时候箱子外部会有一些点,可以理解为数据中的“异常值”   箱线图是经典的可视化方法,但可能会掩盖数据的分布,

    9610

    Python Matplotlib库:统计图补充

    7.二维直方图/散点密度图 8.Hexbin散点图 9.扇形图 ---- 1.引言 上两期我们讲了 Matplotlib 库的基本语法和基本绘图展示。...---- 2.直方图 最常用的统计图就是直方图了,我们可以用hist()方法来绘制直方图,它的语法格式如下: plt.hist(x, bins=None, range=None, density=...bins 如果bins是整数,则它定义区域中等宽条柱的数量。如果bins是一个序列,它定义箱子边缘,包括第一个箱子的左边缘和最后一个箱子的右边缘;在这种情况下,箱子的间距可能不相等。...如果 bins 是一个字符串,则它是’auto’、‘fd’、‘doane’、‘scott’、‘stone’、‘rice’、'sturges’或 'sqrt’之一。 range 条柱的下限和上限范围。...bottom 每个条柱底部的位置,如果为数字,则每个条柱的底部移动相同的量。如果是数组,则每个箱子都是独立移动的,底部的长度必须与箱子的数量相匹配。

    1.9K20

    五分钟入门数据可视化

    其中 x、y 是 data 中的下标。data 就是我们要传入的数据,一般是 DataFrame 类型。...seaborn 直方图: 直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是 y 值),这样就完成了对数据集的直方图分布的可视化...在 Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...我们主要采用 Matplotlib 的 pie 函数实现它。

    2.7K30

    5个快速而简单的数据可视化方法和Python代码

    请查看下面的直方图,我们在其中绘制了频率直方图和IQ直方图。我们可以清楚地看到中心的浓度和中值。我们还可以看到它服从高斯分布。...直方图的例子 Matplotlib中直方图的代码如下所示。有两个参数需要注意。首先,' n_boxes '参数控制我们需要多少个离散的箱子来制作我们的直方图。...其次,“累积”参数是一个布尔值,它允许我们选择直方图是否是累积的。这基本上是选择概率密度函数(PDF)或累积密度函数(CDF)。...均匀分布的透明度设为0.5,这样我们就能看到它后面是什么。这允许直接在同一个图上查看这两个分布。 ? 叠加直方图 对于叠加直方图,需要在代码中设置一些东西。首先,我们设置水平范围以适应这两个变量分布。...根据这个范围和所需的箱子数量,我们实际上可以计算出每个箱子的宽度。最后,我们在同一块图上绘制两个直方图,其中一个稍微透明一些。

    2.1K10

    用Python演绎5种常见可视化视图

    在Matplotlib中,我们经常会用到pyplot这个工具包,它包括了很多绘图函数,类似Matlab的绘图框架。...3.直方图 直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是y值),这样就完成了对数据集的直方图分布的可视化...在Matplotlib中,我们使用plt.hist(x, bins=10)函数,其中参数x是一维数组,bins代表直方图中的箱子数量,默认是10。...其中参数x是一维数组,bins代表直方图中的箱子数量,kde代表显示核密度估计,默认是True,我们也可以把kde设置为False,不进行显示。核密度估计是通过核函数帮我们来估计概率密度的方法。...我们创建一个随机的一维数组,然后分别用Matplotlib和Seaborn进行直方图的显示,结果如下,你可以看出,没有任何差别,其中最后一张图就是kde默认为Ture时的显示情况。 ? ? ?

    1.9K10

    Python 数据可视化,常用看这一篇就够了

    直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是 y 值),这样就完成了对数据集的直方图分布的可视化...在 Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...在 Python 数据可视化中,它用的不算多。我们主要采用 Matplotlib 的 pie 函数实现它。...其中用 kind 表示不同的视图类型:“kind=‘scatter’”代表散点图,“kind=‘kde’”代表核密度图,“kind=‘hex’ ”代表 Hexbin 图,它代表的是直方图的二维模拟。

    2K10

    Python数据可视化的10种技能

    直方图 直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是 y 值),这样就完成了对数据集的直方图分布的可视化...在 Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...我们主要采用 Matplotlib 的 pie 函数实现它。...其中用 kind 表示不同的视图类型:“kind=‘scatter’”代表散点图,“kind=‘kde’”代表核密度图,“kind=‘hex’ ”代表 Hexbin 图,它代表的是直方图的二维模拟。

    2.8K20

    10种聚类算法及python实现

    群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

    83230

    数据可视化-Matplotlib直方图实例

    微信公众号:yale记 关注可了解更多的教程。问题或建议,请公众号留言; 背景介绍 今天我们将学习如何在Matplotlib中创建直方图。...直方图非常适合将数据分成到多个箱子中,并根据这些个箱子查看数据的位置。 可以理解直方图为倾向于通过将段分组在一起来显示分布。例如可能是年龄组,或测试分数。...上图配错了,具体代码如下: import pandas as pd from matplotlib import pyplot as plt from matplotlib import rcParams...fivethirtyeight') #读取数据 data = pd.read_csv('data.csv') ids = data['Responder_id'] ages = data['Age'] #定义箱子分段列表...bins = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] #构造直方图 #每个箱子之间连接的边颜色 #y轴人数显示log plt.hist(ages,bins

    1.6K20

    10种聚类算法的完整python操作实例

    群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。...() 运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

    1.1K20

    【python opencv】二维直方图

    通常,它用于查找颜色直方图,其中两个特征是每个像素的色相和饱和度值。我们将尝试了解如何创建这种颜色直方图,这对于理解诸如直方图反向投影之类的更多主题将很有用。...OpenCV中的二维直方图 它非常简单,并且使用相同的函数cv.calcHist()进行计算。 对于颜色直方图,我们需要将图像从BGR转换为HSV。(请记住,对于一维直方图,我们从BGR转换为灰度)。...第一个参数是H平面,第二个是S平面,第三个是每个箱子的数量,第四个是它们的范围。 绘制二维直方图 方法1:使用 cv.imshow() 我们得到的结果是尺寸为80x256的二维数组。...它将是一幅灰度图像,除非您知道不同颜色的色相值,否则不会对其中的颜色有太多了解。...方法2:使用Matplotlib 我们可以使用matplotlib.pyplot.imshow()函数绘制具有不同颜色图的2D直方图。它使我们对不同的像素密度有了更好的了解。

    1.3K20

    太强了,10种聚类算法完整Python实现!

    群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。...() 运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

    1.6K10

    10 种聚类算法的完整 Python 操作示例

    群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。...,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

    88620

    matplotlib.pyplot中的hist函数

    区分直方图与条形图: 条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的; 直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义...bin(箱子)分布的数据,对应x轴 bins : integer or array_like, optional 这个参数指定bin(箱子)的个数,也就是总共有几条条状图 normed :...for j in range(len(data[0])): data[i][j] = random.randint(1,20)#赋值的范围是1-20中的任意一个 #首先构造数据...normed :normed=True是频率图,默认是频数图 range :筛选数据范围,默认是最小到最大的取值范围 histtype:hist柱子类型 orientation:水平或垂直方向...rwidth:柱子与柱子之间的距离,默认是0 图片中文乱码问题解决以及字体选择 本次选择的是宋体 songTi = matplotlib.font_manager.FontProperties(fname

    4.5K30

    数据分析之Pandas快速图表可视化各类操作详解

    前言 一般我们做数据挖掘或者是数据分析,再或者是大数据开发提取数据库里面的数据时候,难免只能拿着表格数据左看右看,内心总是希望能够根据自己所想立马生成一张数据可视化的图表来更直观的呈现数据。...例如,可以通过vert=False和positions关键字绘制水平和自定义定位箱线图。...下面的示例显示了一个气泡图,它使用DataFrame的一列作为气泡大小。...网格越大,箱子越小。 df.plot.hexbin(x="a", y="b", gridsize=10) 默认情况下,计算每个(x,y)点周围计数的直方图。...这些箱子通过NumPy的max函数进行聚合。 七、饼图 使用DataFrame.plot.pie()或者是Series.plot.pie()可以创建饼图。如果数据包含任何NaN,则它们将自动填充为0。

    42541

    概率密度估计介绍

    第一步是用一个简单的直方图来检查随机样本中观测值的密度。从直方图中,我们可以识别出一个常见的、易于理解的可用概率分布,例如正态分布。如果分布很复杂,我们可能需要拟合一个模型来估计分布。...密度直方图 直方图是这样一种图,它首先将观察结果分组到各个箱子(bin)中,然后计算每个箱子中的事件数量。每个箱子里的计数或观察频率然后用条形图表示,箱子在x轴上,频率在y轴上。...比如说观察值的范围是1到100,那么我们可以有如下两种方式的划分: 3个箱子 (1-33,34-66,67-100):划分比较粗粒度 10个箱子 (1-10,11-20,...,91-100):划分更加细腻度...参数密度估计 大多数随机样本的直方图形状都会与一些大家都熟知的概率分布相匹配。因为这些概率分布经常会在在不同的或者是意料之外的场景反复出现。熟悉这些常见的概率分布将帮助我们从直方图中识别对应的分布。...KDE其实就是一个数学函数,它返回随机变量给定值的概率。Kernel(核函数)能够有效地平滑或插值随机变量结果范围内的概率,使得概率和等于1。

    1.2K20
    领券