OpenCV实现人脸对齐 一:人脸对齐介绍 在人脸识别中有一个重要的预处理步骤-人脸对齐,该操作可以大幅度提高人脸识别的准确率与稳定性,但是早期的OpenCV版本不支持人脸Landmark检测,因此一般都是通过对人脸进行分割...,然后通过角点检测来寻找眼睛两个角点,连线之后根据它们有水平线的角度,旋转实现人脸对齐之后在提取人脸区域,OpenCV3.x版本开始支持获取Landmark数据,最常见的Landmark数据就是人脸的68...实现对齐主要是基于眼睛的位置,对人脸倾斜进行几何变换,实现人脸对齐操作,人脸对齐对提高人脸识别率特别重要,常见的人脸识别系统都会包含人脸对齐操作,举例如下: ?...二:人脸对齐代码实现 基于OpenCV实现人脸对齐主要分为如下几步 1.人脸检测器定义与Landmark检测 OpenCV中通过HAAR或者LBP特征实现了人脸检测,最新的OpenCV3.4基于残差网络也实现了人脸检测...,相关的文章可以阅读: OpenCV基于残差网络实现人脸检测 详解LBP特征与应用(人脸识别) 有了人脸之后,我们就可以通过加载预训练的Landmark检测模型,实现Landmark检测,这里使用的模型是局部二值特征
来源:OpenCV团队 人脸对齐,即根据图像中人脸的几何结构对图像进行仿射变换(旋转、缩放、平移等),将人脸变换到一个统一的状态。人脸对齐是人脸识别的一个重要步骤,可以提升人脸识别的精度。...图2 image.png OpenCV中的一个函数estimateAffine2D()可以用来估计最优的仿射变换矩阵。 ? 函数返回2x3仿射变换矩阵。...以人脸对齐为例,输入参数from为图1中检测出的5个关键点的坐标,to为对齐的关键点位置坐标。对齐的关键点位置可以由训练数据计算得出。...OpenCV中的另一个函数warpAffine()对图像进行仿射变换。 ? 即 ?...以人脸对齐为例,src是输入图像(图1),dst是输出的对齐的人脸图像(图2b),M是2x3的仿射变换矩阵,dsize是要求的对齐人脸图像的大小。 图2可以用下面的函数来实现。 ?
俗话说:不基于需求的敲代码都是耍流氓 ---- 一、人脸检测: 1.准备材料 首先需要准备人脸的训练数据,这个在官方的Github可以下载到,这里用:lbpcascade_frontalface.xml...中,点击图片时使用faceDetector,让C++对图片进行操作 由于人脸识别需要xml的模型文件,这里通过copyCascadeFile将文件考到包里 ---->[src/main/java/...,标识人脸 其实上面已经识别出人脸,并到存到一个vector中。...---- 二、自动尺寸裁剪 现在需求是:根据一张照片(尺寸任意),截取人脸及周围,并裁成规定的尺寸,如两寸:413*626 就像这样: ?...对于大批量,形形色色的人物照片,想要裁剪规整,一个for循环搞定,程序是绝佳劳动力。 ---- 这样你对OpenCV应该多了那么一丢丢感觉了吧,其实只是在调一调已有的方法
使用arcmap对数据进行剪裁,Arcgis中的裁剪分为很多种,有矢量裁剪矢量,矢量裁剪栅格,栅格裁剪栅格。本文主要操作,掩膜裁剪(矢量裁剪栅格)和clip 裁剪。...比如说你的裁剪面是不规则的(例如行政区),最后的裁剪结果就是某一行政区的最小外接矩形(可能好看?)...---- 实验内容三:自定义范围裁剪 关键步骤: 一:新建shp格式自定义范围裁剪面(可不规则、可矩形、可正方形等) 1.打开ArcGIS中,在你选择的影像所在的文件夹直接右击...中shape数据相互转换:我们经常会在Google Earth中获取影像数据,要将其在Arcgis中打开进行使用,经过分析后可能再会回到Google Earth进行对照分析,这就涉及到二者数据格式的相互转换问题...二:工具说明 在ArcGIS中导入KML(keyhole markup language),在arctoolbox中,转换工具和KML下都有KML到layer。 三:转换后的裁剪,参照掩膜大法
前言 《C++ OpenCV Contrib模块LBF人脸特征点检测》文章中已经介绍了人脸特征点的检测,本篇文章是在原代码的基础上实现人脸的提取。 ? 实现效果 ?...从上图上可以看到,左边蓝色方框里面是截取的人脸图像,然后在人脸图像的基础上针对特征点选定区域,最后生成右边圆框中的人脸图像。...# 实现方式 1 使用DNN检测到人脸并截取人脸部分区域 2 在截取的人脸区域中检测人脸68个特征点 3 针对68个特征点实现凸包检测形成图像掩膜 4 根据掩膜提取图像的人脸信息 关于人脸68个特征点...两个需要注意的点: 人脸关键点检测出来的数据是vector>,而做凸包检测的时候需要将vector>转换成vector<vector<Point...结语 源码下一篇会再提交上去,现在的源码在处理人脸的Delaunay三角形的 提取,正好遇到了问题。等下篇的时候一起说一下。 完
下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4....detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸...LBPH是在原始 LBP 上的一个改进,在 opencv 支持下可以直接调用函数直接创建一个 LBPH 人脸识别的模型。...二、python+opencv实现人脸检测 1....自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频中人脸检测不准确。 4.
下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4....():是OpenCV中人脸检测的一个级联分类器,既可以使用Haar特征,也可以使用LBP特征。...detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸...二、python+opencv实现人脸检测 1....自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频中人脸检测不准确。 4.
在有CSS 3.0之前裁剪图片实现也是颇有难度的,现在我们有了两个非常方便简单的属性可以实现裁剪,那就是object-fit和object-position,这两个属性可以让我们改变图片的大小,但是不影响图片的长宽比...,利用它我们可以实现一个如下的特效。... CSS 3.0中裁剪图像的特效...transition: 0s; } 勾选裁剪图片
使用Opencv-python对图像进行缩放和裁剪 在Python中使用opencv-python对图像进行缩放和裁剪非常简单,可以使用resize函数对图像进行缩放,使用对cv2.typing.MatLike...操作,如img = cv2.imread(“Resources/shapes.png”)和img[46:119,352:495] 进行裁剪, 如有下面一副图像: 可以去https://github.com.../murtazahassan/Learn-OpenCV-in-3-hours/blob/master/Resources/shapes.png地址下载 使用Opencv-python对图像进行缩放和裁剪的示例代码如下所示...) imgResize = cv2.resize(img,(1000,500)) # 将原图缩放成1000*500 print(imgResize.shape) # 打印缩放后的图像大小 imgCropped...) # 显示缩放后的图像 cv2.imshow("Image Cropped",imgCropped) # 显示对原图裁剪后的图像 cv2.waitKey(0) # 永久等待按键输入 cv2
所以我们需要对获取到的照片进行处理,将人脸裁剪出来。我们利用OpenCv和dlib对数据集进行了人脸的检测和对齐,以便后续对模型进行训练。...图2 检测人脸68个特征点 ---- 01 02 03 04 图3 人脸数及对齐人脸数 因为识别有一定的误差,所以需要对裁剪后的照片进行筛选,将极少数对齐不准确的照片手动删除,并将数据集的照片进行重命名...图4 裁剪后的正负样本集 (2)正负样本数据集灰度处理及像素处理 对数据集进行灰度处理可以增强图像对比度,增大图片的动态范围,让图像更清晰,特征更明显,能够更好的对模型进行训练。...图5 灰度、像素处理后的正负样本 (3) 训练人脸口罩数据集模型 训练级联分类器时使用的是opencv3.4.1版中的opencv\_createsamples.exe和opencv\_traincascade.exe...4、设置每帧数据延时为1ms,使用人脸检测器检测每一帧图像中的人脸做灰度处理,并输出人脸数。5、对每个人脸定位画出方框,显示识别结果。
大家好,又见面了,我是你们的朋友全栈君。...在OpenCV的IplImage指针结构中,有一个成员widthStep,这个值如何来确定呢,最近让我头疼了好久,终于想明白了,现在 拿出来跟大家交流一下,不知道我的想法对吗,起码在我验证时没有出错。...widthStep应该等于width*3,但是由于4字节对齐问题,有时候需要在一行的末尾需要填充1-3个字节,这时候widthStep>width*3。...因此, widthStep的值的计算有两种情况: 1.当(width*3)%4=0,这时width*3=widthStep; 2.当(width*3)%4 !
最简单的方法就是对齐裁剪:先计算出裁剪的比例,保留原图满足比例最长的一条边,从中间裁剪后缩放成目标尺寸。...这个xml文件是OpenCV训练好的人脸Haar特征分类器,我们要做的就是直接用这个数据来匹配图像。下面几行完成了读取级联表和图像灰度化。...,其中: - gray表示灰度图; - scaleFactor用以补偿多人脸透视现象中存在的大小差距; - minNeighbors表示构成扫描图像滑动窗口的矩形的最小个数; - minSize表示滑动窗口的大小...- flags指定边缘检测的策略,一般为默认值 方法的返回值是一系列指定人脸边缘的矩形元组,每个元组中包括矩形的横、纵坐标、宽、高。..., (x + w, y + h), (0, 255, 0), 2) center[0] /= point_num center[1] /= point_num 然后再以此坐标为中心,按照之前的对齐裁剪方案
已经提出了许多算法来快速准确地检测图像/视频中的人脸。MTCNN 就是其中之一,它基于 FaceNet。 在 Python 的实现中,模型已经过预训练和优化,因此我们可以直接使用该模型。...在本文中,我们将使用完整的照片并实施我们自己的人脸对齐方法以提高准确性。 图像预处理——UTKface 数据集 我们需要使用 MTCNN 或任何其他面部识别模型从整张照片中裁剪人脸。...然而,这些算法中的大多数会根据检测到的人脸的大小和位置给出不同形状的边界框。 深度学习模型要求输入图像具有标准化大小(警告:不适用于全卷积网络,超出本文范围)。因此,有必要调整裁剪面的大小。...一张理想的裁剪人脸照片应该是人脸位于中心,没有失真和所需的大小。如果所需的大小是正方形,则以下方法可以解决问题。...优点是所有图像都被很好地裁剪和对齐,因此有利于快速原型制作。 该数据集的一个注释:对于每个情绪类别,个人面孔重复 3 次。因此,如果随机进行训练/测试拆分,则会发生目标泄漏。
在本文中,我们将了解如何使用 Cropper.js 在 React Web 应用中裁剪图像。尽管我们不会将这些图像上传到远程服务器进行存储,但是很容易就能完成这个任务。...要了解我们要完成的工作,请看以下动画: ? React应用中的Cropper.js 如你所见,有一个带有源图像的交互式 canvas。操作的结果显示在“预览”框中,如果需要,可以将其保存。...接下来还将导入为该特定组件定义的自定义 CSS。 在 constructor 方法中,我们定义了状态变量,该变量表示最终更改的图像。...我们仅允许裁剪和移动。...,将获得画布区域,并将其作为图像数据存储在 imageDestination 状态变量中。
代码为转载,出处找不到了,不贴了 工具条进度条: // ConvertColor.cpp : 定义控制台应用程序的入口点。...// #include "stdafx.h" #include #include opencv2/highgui/highgui.hpp> #include opencv2.../imgproc/imgproc.hpp> #pragma comment(lib,"opencv_core2410d.lib") #pragma comment(lib,"opencv_highgui2410d.lib...= 'q') {} return 0; } 效果: 图像裁切代码: // ConvertColor.cpp : 定义控制台应用程序的入口点。...// #include "stdafx.h" #include #include opencv2/highgui/highgui.hpp> #include opencv2
它可以用于各种应用,例如安全控制,自动标记照片和视频,以及人脸识别解锁设备等。在这篇博客中,我们将详细讨论人脸识别技术,以及如何使用 Python 中的 OpenCV 库实现人脸识别。...这些算法使用训练数据集中的人脸图像来学习每个人脸的特征,并在新图像中使用这些特征来识别人脸。 如何使用 OpenCV 实现人脸识别?...OpenCV 是一种流行的计算机视觉库,它支持各种各样的图像处理和分析任务。在本博客中,我们将使用 OpenCV 来实现人脸识别。 首先,您需要安装 OpenCV 库。...np 接下来,我们需要使用 OpenCV 的 Haar 级联分类器来检测图像中的人脸。...在本博客中,我们使用 OpenCV 库来实现了人脸识别。我们首先使用 Haar 级联分类器来检测图像中的人脸,然后在人脸周围绘制矩形框,最后将绘制矩形框后的图像显示出来。
本文建议阅读时间 20min 本文主要介绍 OpenCV 的以下几个操作: 霍夫变换重映射直方图反向投影模板匹配 霍夫变换 基本概念 霍夫变换是一种特征提取技术,主要应用于检测图像中的直线或者圆。...直方图 直方图基本概念,分析 学习目标: OpenCV 和 Numpy 中的函数查找直方图 绘制直方图 cv2.calcHist(), np.histogram(), plt.hist() 直方图就是灰色图像每个像素...自适应均衡化的原理是:图像被分成称为 “tile” 的小块(在 OpenCV 中,tileSize 默认为 8x8)。然后像往常一样对这些块中的每一个进行直方图均衡。...如果任何直方图区间高于指定的对比度限制(在 OpenCV 中默认为 40 ),则在应用直方图均衡之前,将这些像素剪切并均匀分布到其他区间。均衡后,为了去除图块边框中的瑕疵,应用双线性插值。...模板匹配 理论 学习目标 查找图像中的指定对象 cv2.matchTemplate(), cv2.minMaxLoc() 在一副图像中查找与模板图像最匹配(相似)的部分。
FERET人脸数据库 由FERET项目创建,包含14,051张多姿态,光照的灰度人脸图像,是人脸识别领域应用最广泛的人脸数据库之一.其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一. 2....AR人脸数据库 由西班牙巴塞罗那计算机视觉中心建立,包含116人的3,288幅图像.采集环境中的摄像机参数,光照环境,摄像机距离等都是严格控制的. 9....人脸检测方法: OpenCV自带的基于Harr特征的V-Jdetector; 基于HOG+SVM特征的dlib; doppia库的三种人脸检测方法(DPM,HeadHunter和HeadHunter_baseline...上面几种人脸检测效果中doppia库提供的人脸检测效果最好,顺便提一下,doppia库除了有比较好的人脸检测算法之外还有行人检测算法DPM, DPM应该算是的传统机器学习模式(非深度学习)下行人检测效果最好的算法...还研究了级联人脸对齐中的几个有影响的方面。从一个全面的实证研究中,得出了当前人脸对齐方法的有用结论,并为实际应用提出了深刻的见解。
的简单使用 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库, 可以运行在Linux、Windows、Android和Mac OS操作系统上。...cv2 img=cv2.imread('E:/Literature/material/personal/2.jpg')#绝对路径 #人脸的识别,保证人脸图片清晰,要尽量选择正脸进行识别 #导入cv2中人脸特征数据的数据包...,里面都是人脸特征数据 #在python环境中,有已经集成好的训练文件,位置lib—>site-packages—>cv2—>data—>haarcascade_frontalface_alt.xml...") #图像,缩放距离,最小间距 faces=face_date.detectMultiScale(img,scaleFactor=1.1,minNeighbors=5) #随着返回着二维数组里外维度下元素的个数表示识别人脸的个数...print(faces)#表示距离图像边缘的距离 for x,y,w,h in faces: #画矩形 #人脸图像,人脸方框的初始位置,人脸方框的末尾坐标,边框颜色 cv2.rectangle
另外YUV的一个好处是彩色电视信号对黑白电视的兼容,因为当两个色差分量值为0的时候(代表没有色差)输出的图像是黑白的。...YUV的主要目的是在保证图像显示质量的前提下尽量缩小图像的体积,而且通过把亮度分量从RGB颜色分量中分离出来也能够使黑白显示设备能够兼容彩色信号。...YCbCr是YUV家族中在工业领域使用最广泛的一种标准,这也是为什么JPEG内部编码采用YCbCr的原因。...Face detection in color images 文章里系统的讲解了人脸检测的相关算法。...Image_YCbCr(i, j, 2));%Cb成分 指蓝色色度 CrY = double(Image_YCbCr(i, j, 3));%Cr成分 红色色度 %double去掉显示的就是灰度图像
领取专属 10元无门槛券
手把手带您无忧上云