首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

OpenCV4.4 中SIFT特征匹配调用演示

大家好,听说OpenCV4.4 已经把SIFT跟SURF特征提取又重新get回来了,可以不需要编译OpenCV源码,直接下载官方预编译版本的就可以直接使用了。...如果你还不知道SIFT特征是什么,就看这里的这篇文章就好啦。...01 创建SIFT特征提取器 下面就来验证一下是否真的可以了,请看步骤与过程,首先创建SIFT特征提取器,实现特征点跟描述子的提取,代码实现如下: // 创建SIFT特征提取 auto detector...OpenCV中支持两种特征匹配方法,分别是暴力匹配与FLANN匹配,对浮点数的特征描述子,FLANN匹配比暴力会明显加快运算,创建FLANN实现匹配,并根据相似度排序,寻找最佳匹配得的代码如下: //...03 单应性矩阵求解与透视变换 对得到的最佳匹配描述子对,取得对应的图像关键点坐标,完成单应性矩阵求解,实现透视变换,是重要的一步,关于单应性矩阵的求解与应用,这里不再赘述,这部分的代码实现如下: //

3K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV4.5.x 中SIFT特征匹配调用演示

    点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 OpenCV4.4版本以后已经把SIFT跟SURF特征提取又重新get回来了,可以不需要编译OpenCV源码,直接下载官方预编译版本的就可以直接使用了...但是很多人还以为必须要编译源码才能使用SIFT特征检测的函数!如果还不知道SIFT特征是什么,就看这里的这篇文章就好啦。...OpenCV SIFT特征算法详解与使用 01 创建SIFT特征提取器 下面就来验证一下是否真的可以了,请看步骤与过程,首先创建SIFT特征提取器,实现特征点跟描述子的提取,代码实现如下: // 创建...OpenCV中支持两种特征匹配方法,分别是暴力匹配与FLANN匹配,对浮点数的特征描述子,FLANN匹配比暴力会明显加快运算,创建FLANN实现匹配,并根据相似度排序,寻找最佳匹配得的代码如下: // ...,取得对应的图像关键点坐标,完成单应性矩阵求解,实现透视变换,是重要的一步,关于单应性矩阵的求解与应用,建议看公众号之前的几篇相关文章即可: OpenCV单应性矩阵发现参数估算方法详解 单应性矩阵应用

    1.5K20

    使用 OpenCV 的 SIFT 图像特征提取和匹配

    简介: 图像特征提取和匹配是计算机视觉和图像处理中的重要任务。它们在图像识别、目标检测和图像拼接等各种应用中发挥着至关重要的作用。...在本文中,我们将探讨如何将 SIFT 与流行的开源计算机视觉库 OpenCV 一起用于图像特征提取和匹配。 输入图像:让我们首先加载要在其上执行特征提取和匹配的输入图像。...我们可以使用 OpenCV 的内置函数来读取和显示图像。...OpenCV 提供了一个cv2.xfeatures2d.SIFT_create()函数来创建我们可以用于特征提取的 SIFT 对象。我们可以指定各种参数,例如要检测的关键点数、倍频程数和对比度阈值。...一种流行的方法是蛮力匹配器,它将输入图像中的关键点描述符与另一幅图像中的关键点描述符进行比较,以找到最佳匹配。OpenCV 提供了一个可用于暴力匹配的cv2.BFMatcher类。

    12710

    opencv实现imfill_使用opencv实现matlab中的imfill填充孔洞功能

    大家好,又见面了,我是你们的朋友全栈君 使用opencv实现matlab中的imfill填充孔洞功能,整体思路如下: 1. 首先给原始图像四周加一圈全0,并保存为另一幅图像 2....因为原始图像四周加了一圈0,因此使用floodFill填充之后,整个图像除了原始图像中内部的点是黑色之外其他地方全是白色。 3. 将填充之后的图像颜色反转,再剪裁成原始图像大小。...此时这张图像除了内部需要填充的地方是白色之外其他地方都是黑色。 4. 最后将新图像和原始图像取个并集,完成。...代码如下: /** \brief 填充二值图像孔洞 \param srcimage [in] 输入具有孔洞的二值图像 \param dstimage [out] 输出填充孔洞的二值图像 \return...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    68520

    【5】OpenCV2.4.9实现图像拼接与融合方法【SURF、SIFT、ORB、FAST、Harris角点 、stitch 】

    2】【3】【4】 OpenCV2.4.9实现图像拼接与融合三种方法【SURF ORB stitch 】 将四副分割图融合为一张完整的图片 特征检测和特征匹配后: 最后效果: 实现图像拼接具体步骤...(2)SURF 特征向量的生成 首先以特征点为中心确定边长为 20s 的正方形区域,然后再划分为4×4 的小区域,每个小区域又分为5×5个采样点,最后用Harr小波计算每个小区域垂直和水平方向的响应,并统计.../picture/first_match.jpg", first_match); 为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,SIFT的作者Lowe提出了比较最近邻距离与次近邻距离的SIFT...匹配方式:取一幅图像中的一个SIFT关键点,并找出其与另一幅图像中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离得到的比率ratio少于某个阈值T,则接受这一对匹配点。...其实自己就有实现图像拼接的算法,opencv stitch算法到底选用了哪个算法作为其特征检测方式: #ifdef HAVE_OPENCV_NONFREE stitcher.setFeaturesFinder

    2.7K30

    C++ OpenCV特征提取之SIFT特征检测

    前言 前面我们介绍了《C++ OpenCV特征提取之SURF特征检测》,这一篇我们在介绍一下SIFT的特征提取。...关键点定位 通过邻近信息插补来定位 与SIFT类似 方向定位 通过计算关键点局部邻域的方向直方图,寻找直方图中最大值的方向作为关键点的主方向 通过计算特征点周围像素点x,y方向的哈尔小波变换,将x、y...应用中的主要区别 通常在搜索正确的特征时更加精确,当然也更加耗时 描述子大部分基于强度的差值,计算更快捷 SIFT特征基本介绍 SIFT(Scale-Invariant Feature Transform...的都保留 这样就实现了旋转不变性,提高了匹配时候的稳定性 大约有15%的关键点会有多个方向 ---- 关键点描述子 拟合多项式插值寻找最大Peak 得到描述子 = 4*4*8=128 ?...记得我们要加上opencv2\xfeatures2d.hpp 使用SIFT检测,其实红框里面是我们定义的参数,可以修改一下参数进行变化 ? 运行效果 ?

    4K40

    冷知识 | OpenCV绘制带箭头方向的线段

    点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 引子 我根据一个矩形进行了各种角度旋转,就想通过绘制一个带方向的线段表示它,通过旋转矩阵很容易的获取了两个点坐标...,但是很快遇到了一个新问题,怎么绘制那个箭头,就是带箭头的线段,OpenCV中的cv.line函数只支持绘制不带箭头的线段,于是我决定重复造轮子 手动版实现带箭头的线段绘制 因为我知道opencv有个函数是...line无法支持绘制带箭头的直线,于是网上一通猛搜,发现一个哥们博客写OpenCV3如何绘制带箭头的线段,C++的代码!...OpenCV中的函数是: void cv::arrowedLine(         InputOutputArray img, # 输入图像     Point pt1, # 线段端点     Point...Pytorch轻松实现经典视觉任务 教程推荐 | Pytorch框架CV开发-从入门到实战 OpenCV4 C++学习 必备基础语法知识三 OpenCV4 C++学习 必备基础语法知识二 OpenCV4.5.4

    1K30

    OpenCV中基于Retinex的图像增强实现

    需要注意的是,最后一步量化的过程中,并不是将 Log[R(x,y)] 进行 Exp 化得到 R(x,y) 的结果,而是直接将 Log[R(x,y)] 的结果直接用如下公式进行量化: ?...Mat::convertTo函数 该函数能改变图像的深度,而且可以实现原地改变。但是不能改变图像的通道数。...Vec2b—表示每个Vec2b对象中,可以存储2个char(字符型)数据 Vec3b—表示每一个Vec3b对象中,可以存储3个char(字符型)数据,比如可以用这样的对象,去存储RGB图像中的...Vec4b—表示每一个Vec4b对象中,可以存储4个字符型数据,可以用这样的类对象去存储—4通道RGB+Alpha的图 SSR算法实现 void SingleScaleRetinex(...//高斯模糊,当size为零时将通过sigma自动进行计算 GaussianBlur(doubleImage, gaussianImage, Size(0, 0), sigma); //OpenCV

    2.4K21

    OpenCV SIFT特征算法详解与使用

    星标或者置顶【OpenCV学堂】 干货文章与技术教程第一时间送达 SIFT概述 SIFT特征是非常稳定的图像特征,在图像搜索、特征匹配、图像分类检测等方面应用十分广泛,但是它的缺点也是非常明显,就是计算量比较大...夸张一点的说SIFT算法涵盖了图像特征提取必备的精髓思想,从特征点的检测到描述子生成,完成了对图像的准确描述,早期的ImageNet比赛中,很多图像分类算法都是以SIFT与HOG特征为基础,所有SIFT...,生成多个层多个尺度的金字塔,就是实现了图像的多尺度金字塔。...关键点方向指派 前面我们已经详细解释了SIFT特征点是如何提取的,有了特征点之后,我们对特征点周围的像素块计算角度方向直方图,在计算直方图之前首先需要对图像进行梯度计算,这里可以使用SOBEL算子,然后根据...OpenCV中调用 OpenCV已经实现了SIFT算法,但是在OpenCV3.0之后因为专利授权问题,该算法在扩展模块xfeature2d中,需要自己编译才可以使用,OpenCV Python中从3.4.2

    8.7K33

    OpenCV 入门教程:SIFT和SURF特征描述

    OpenCV 入门教程: SIFT 和 SURF 特征描述 导语 SIFT (尺度不变特征变换)和 SURF (加速稳健特征)是图像处理中常用的特征描述算法,用于提取图像中的关键点和生成对应的特征描述子...一、SIFT特征描述原理 SIFT 算法通过尺度空间和梯度方向直方图来描述图像中的关键点。...该算法的基本思想是:检测关键点的尺度空间,生成关键点的高斯金字塔,计算关键点的梯度方向直方图,生成关键点的描述子。...SIFT 和 SURF 特征描述是图像处理中常用的特征提取算法,适用于图像匹配、目标识别和三维重建等多个应用领域。通过提取关键点和生成对应的特征描述子,我们可以实现对图像中特征的定位、描述和分析。...祝你在使用 OpenCV 进行 SIFT 和 SURF 特征描述的过程中取得成功!

    1.6K20

    OpenCV特征点检测------Surf(特征点篇)

    同理,x和y方向的二阶混合偏导模板如下所示: 上面讲的这么多只是得到了一张近似hessian行列式图,这类似sift中的DOG图,但是在金字塔图像中分为很多层,每一层叫做一个octave,每一个octave...Sift选取特征点主方向是采用在特征点领域内统计其梯度直方图,取直方图bin值最大的以及超过最大bin值80%的那些方向做为特征点的主方向。       ...构造surf特征点描述算子         在sift中,是在特征点周围取16*16的邻域,并把该领域化为4*4个的小区域,每个小区域统计8个方向梯度,最后得到4*4*8=128维的向量,该向量作为该点的...在surf中,也是在特征点周围取一个正方形框,框的边长为20s(s是所检测到该特征点所在的尺度)。该框带方向,方向当然就是第4步检测出来的主方向了。...加入属性表的链接器熟悉的输入中,其中x换成你当前opencv的版本号。

    1.5K40

    opencv︱opencv中实现行人检测:HOG+SVM(二)

    接:opencv︱HOG描述符介绍+opencv中HOG函数介绍(一) 相关博文:Recorder︱图像特征检测及提取算法、基本属性、匹配方法 转载于:Opencv HOG行人检测...源码分析(一)和HOG:从理论到OpenCV实践 HOG+SVM是传统计算机视觉中的经典组合模型。...对每一个cell,算出每一点的梯度方向和模,按梯度方向增加对应bin的值,最终综合N个cell的梯度直方图形成一个高维描述子向量。实际实现的时候会有各种插值。...---- 二、opencv实现的code #include opencv2/core/core.hpp> #include opencv2/highgui/highgui.hpp> #include...,这个getDefaultPeopleDetector是默认模型,这个模型数据在OpenCV源码中是一堆常量数字,这些数字是通过原作者提供的行人样本INRIAPerson.tar训练得到的。

    6.6K30

    【论文复现】进行不同视角图像的拼接

    方向匹配 通过根据局部图像属性为每个关键点分配一致的方向,可以相对于该方向表示关键点描述符,从而实现图像旋转的不变性。 局部图像描述 之前的操作已经为每个关键点分配了图像位置、比例和方向。...下一步是计算局部图像区域的描述符,该描述符具有高度独特性,对剩余变化(例如照明或 3D 视点的变化)尽可能保持不变 代码原理 为实现SIFT特征检测,主要使用到了以下的两个工具包:OpenCV,numpy...其中OpenCV是一个非常知名且受欢迎的跨平台计算机视觉库,它不仅包含常用的图像读取、显示、颜色变换,还包含一些为人熟知的经典特征检测算法,其中就包括SIFT,所以本文使用OpenCV进行读取和SIFT...代码的具体实现逻辑如下: (1)首先先读入待拼接的图像,例如下述代码示例中的’hanying1.jpg’和’hanying2.jpg’,然后使用opencv自带的cv2.SIFT_create()创建...代码部署 需要导入的核心类库为opencv和numpy import cv2 import numpy as np 核心代码 首先使用cv2.SIFT_create()创建SIFT特征检测器对象,然后就需要将图片输入到特征描述对象中

    10910

    OpenCV特征点检测------ORB特征

    to SIFT or SURF, ICCV 2011 没有加上链接是因为作者确实还没有放出论文,不过OpenCV2.3RC中已经有了实现,WillowGarage有一个talk也提到了这个算法,因此我不揣浅陋...ECCV 2010 注意在BRIEF eccv2010的文章中,BRIEF描述子中的每一位是由随机选取的两个像素点做二进制比较得来的。...FAST应用的很多了,是出名的快,以防有人不知道,请看这里: 在Sift的方案中,特征点的主方向是由梯度直方图的最大值和次大值所在的bin对应的方向决定的。略嫌耗时。...在ORB的方案中,特征点的主方向是通过矩(moment)计算而来,公式如下: 有了主方向之后,就可以依据该主方向提取BRIEF描述子。...但是这样只求速度的特征描述子,一般都是应用在实时的视频处理中的,这样的话就可以通过跟踪还有一些启发式的策略来解决尺度不变性的问题。 关于计算速度: ORB是sift的100倍,是surf的10倍。

    51410

    【图像配准】SIFT算法原理及二图配准拼接

    SIFT主要是用来提取图像中的关键点。相比于其它角点检测算法(如Harris和shi-toms),SIFT算法具有角度和尺度不变性,换句话说就是不容易受到图像平移、旋转、缩放和噪声的影响。...SIFT算法实践 下面进入到SIFT的编程实践,OpenCV的提供了非常方便的调用接口。 不同版本的OpenCV接口可能会略有区别,下面使用的OpenCV版本为4.5.4.60。...关键点检测 下面这段程序实现了一幅图片的关键点检测。...参考 利用 SIFT 实现图像拼接 https://blog.csdn.net/itnerd/article/details/89157849 OpenCV中KeyPoint类 https://blog.csdn.net...算法原理实现 https://blog.csdn.net/weixin_48167570/article/details/123704075 基于OpenCV全景拼接(Python)https://cloud.tencent.com

    5.6K30

    OpenCV特征点检测——ORB特征

    to SIFT or SURF, ICCV 2011 没有加上链接是因为作者确实还没有放出论文,不过OpenCV2.3RC中已经有了实现,WillowGarage有一个talk也提到了这个算法,因此我不揣浅陋...FAST应用的很多了,是出名的快,以防有人不知道,请看这里: 在Sift的方案中,特征点的主方向是由梯度直方图的最大值和次大值所在的bin对应的方向决定的。略嫌耗时。...在ORB的方案中,特征点的主方向是通过矩(moment)计算而来,公式如下: 有了主方向之后,就可以依据该主方向提取BRIEF描述子。...但是这样只求速度的特征描述子,一般都是应用在实时的视频处理中的,这样的话就可以通过跟踪还有一些启发式的策略来解决尺度不变性的问题。 关于计算速度: ORB是sift的100倍,是surf的10倍。...B9%8Bcvcamera/ 最新版的OpenCV中新增加的ORB特征的使用 看到OpenCV2.3.1里面ORB特征提取算法也在里面了,套用给的SURF特征例子程序改为ORB特征一直提示错误,类型不匹配神马的

    1.5K70

    基于图像识别的自动化

    在 维基百科中可以查到,针对不同的特征形态有很多不同的特征检测算法。 维基百科中的特征检测 最著名的特征检测算法莫过于 SIFT 和 SURF 了。...SIFT 特征点检测 使用以下代码(来源:opencv-python-tutroals)可以画出一张图片的 SIFT 特征点。...) cv2.imwrite('sift_keypoints.jpg',img) 使用 OPENCV 画出的 SIFT 特征点 SIFT 特征点包含很多属性:坐标,邻域范围,方向,关键点强度的响应等。...总结一下,使用模板匹配 matchTemplate可找到最佳匹配位置,前提是图片方向一致。使用 SIFT 特征点匹配 去噪算法,可找到两张图的特征点匹配度。...附:图像对比的 python 代码 运行环境:Python2.7 opencv2.4(opencv3.X 版本去除了 SIFT 等代码,需要另外安装库才支持,非常麻烦),opencv2.4 安装方法:http

    8.1K70

    OpenCV中实现曲线与圆拟合

    使用OpenCV做图像处理与分析的时候,经常会遇到需要进行曲线拟合与圆拟合的场景,很多OpenCV开发者对此却是一筹莫展,其实OpenCV中是有现成的函数来实现圆拟合与直线拟合的,而且还会告诉你拟合的圆的半径是多少...,简直是超级方便,另外一个常用到的场景就是曲线拟合,常见的是基于多项式拟合,可以根据设定的多项式幂次生成多项式方程,然后根据方程进行一系列的点生成,形成完整的曲线,这个车道线检测,轮廓曲线拟合等场景下特别有用...下面就通过两个简单的例子来分别学习一下曲线拟合与圆拟合的应用。 一:曲线拟合与应用 基于Numpy包的polyfit函数实现,其支持的三个参数分别是x点集合、y点集合,以及多项式的幂次。...上述演示的完整代码实现如下: def circle_fitness_demo(): # 创建图像, 绘制初始点 image = np.zeros((400, 400, 3), dtype...,对发现的近似圆的轮廓,通过圆拟合可以得到比较好的显示效果,轮廓发现与拟合的API分别为findContours与fitEllipse,有图像如下: ?

    5.3K41
    领券