首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

掌握pandas中的时序数据分组运算

pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。...图1 2 在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始的意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用的都是「下采样」,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...,就像下面的例子那样: import pandas as pd # 记录了2013-02-08到2018-02-07之间每个交易日苹果公司的股价 AAPL = pd.read_csv('AAPL.csv

3.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (数据科学学习手札99)掌握pandas中的时序数据分组运算

    ,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。   ...图1 2 在pandas中进行时间分组聚合   在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始的意思是重采样,可分为上采样与下采样,而我们通常情况下使用的都是下采样,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。   ...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...,就像下面的例子那样: import pandas as pd # 记录了2013-02-08到2018-02-07之间每个交易日苹果公司的股价 AAPL = pd.read_csv('AAPL.csv

    1.8K20

    数据导入与预处理-第6章-02数据变换

    本文介绍的Pandas中关于数据变换的基本操作包括轴向旋转(6.2.2小节)、分组与聚合(6.2.3小节)、哑变量处理(6.2.4小节)和面元划分(6.2.5小节)。...=False) 输出为: 2.3 分组与聚合(6.2.3 ) 分组与聚合是常见的数据变换操作 分组指根据分组条件(一个或多个键)将原数据拆分为若干个组; 聚合指任何能从分组数据生成标量值的变换过程...,这一过程中主要对各分组应用同一操作,并把操作后所得的结果整合到一起,生成一组新数据。...使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...查看DF的值: # 根据列表对df_obj进行分组,列表中相同元素对应的行会归为一组 groupby_obj = df_obj.groupby(by=['A', 'A', 'B', 'B', '

    19.3K20

    Pandas tricks 之 transform的用法

    思路一: 常规的解法是,先用对订单id分组,求出每笔订单的总金额,再将源数据和得到的总金额进行“关联”。最后把相应的两列相除即可。相应的代码如下: 1.对订单id分组,求每笔订单总额。...这就是transform的核心:作用于groupby之后的每个组的所有数据。可以参考下面的示意图帮助理解: ? 后面的步骤和前面一致。 ? 这种方法在需要对多列分组的时候同样适用。...多列分组使用transform 为演示效果,我们虚构了如下数据,id,name,cls为维度列。 ? 我们想求:以(id,name,cls)为分组,每组stu的数量占各组总stu的比例。...在上面的示例数据中,按照name可以分为三组,每组都有缺失值。用平均值填充是一种处理缺失值常见的方式。此处我们可以使用transform对每一组按照组内的平均值填充缺失值。 ?...小结: transform函数经常与groupby一起使用,并将返回的数据重新分配到每个组去。利用这一点可以方便求占比和填充缺失值。但需要注意,相比于apply,它的局限在于只能处理单列的数据。

    2.1K30

    总结了25个Pandas Groupby 经典案例!!

    大家好,我是俊欣~ groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。...例如,可以找到每个组中唯一的产品代码如下: sales.groupby("store", as_index=False).agg( unique_values = ("product_code","unique...如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。 让我们首先添加一个缺少存储值的新行。...Daisy","PG1")) daisy_pg1.head() output 21、rank函数 rank函数用于根据给定列中的值为行分配秩。...我们可以使用rank和groupby函数分别对每个组中的行进行排序。

    3.4K30

    25个例子学会Pandas Groupby 操作(附代码)

    它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。 如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。...例如,可以找到每个组中唯一的产品代码如下: sales.groupby("store", as_index=False).agg( unique_values = ("product_code","unique...如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。 让我们首先添加一个缺少存储值的新行。..."Daisy","PG1") ) daisy_pg1.head() 21、rank函数 rank函数用于根据给定列中的值为行分配秩。...我们可以使用rank和groupby函数分别对每个组中的行进行排序。

    3.1K20

    Pandas 秘籍:6~11

    所有基本的分组操作都有分组列,这些列中值的每个唯一组合代表数据的独立分组。...AIRLINE和WEEKDAY的每个唯一组合均形成一个独立的组。 在每个组中,找到已取消航班的总数,然后将其作为序列返回。 步骤 2,再次按AIRLINE和WEEKDAY分组,但这一次汇总了两列。...显示所有公共属性和方法以揭示所有可能的函数(如在步骤 2 中所做的那样)很有用。每个组由元组唯一标识,该元组包含分组列中值的唯一组合。...更多 在此秘籍中,我们为每个组返回一行作为序列。 通过返回数据帧,可以为每个组返回任意数量的行和列。...步骤 2 使用index和columns参数中的所有列作为分组列开始复制过程。 这是使此秘籍生效的关键。 数据透视表只是分组列的所有唯一组合的交集。

    34K10

    七步搞定一个综合案例,掌握pandas进阶用法!

    每个城市会销售各种各样的产品,现在想要统计每个城市各个子类别中,累计销售数量筛选出每个城市每个子类别中销量占比top 50%的至多3个产品。...2.分组聚合 按照需求,需要计算每个城市每个子类别下产品的销售总量,因此需要按照city和sub_cate分组,并对amt求和。为计算占比,求得的和还需要和原始数据合在一块作为新的一列。...这里的排序有两个层次的含义,第一种是组内实际顺序不变,只给一个排序编号。代码如下所示,method=first是保证序号是连续且唯一的。...第二种是排序之后,改变数据的实际顺序。我们使用lambda函数实现:对每个分组按照上一步生成的rank值,升序排列。...result.to_excel('result.xlsx', index=None) 小结 本文使用pandas,通过7个步骤实现了一个综合案例:筛选出每个城市每个子类别中销量占比top 50%的至多3

    2.7K40

    机器学习三剑客之PandasPandas的两大核心数据结构Panda数据读取(以csv为例)数据处理Pandas的分组和聚合(重要)

    Pandas是基于Numpy开发出的,专门用于数据分析的开源Python库 Pandas的两大核心数据结构 Series(一维数据) 允许索引重复 DataFrame(多特征数据,既有行索引...(result.describe()) Panda数据读取(以csv为例) pandas.read_csv(filepath_or_buffer, sep=",", names=None, usecols.../train.csv", nrows = 10) # 将数据中的time转换为最小分度值为秒(s)的计量单位 train["time"] = pd.to_datetime(train["time"],..., 表示出用户姓名,和商品名之间的关系 user_goods = pd.crosstab(u_o_g["姓名"],u_o_g["goods_name"]) Pandas的分组和聚合(重要) 小案例:.../directory.csv") # 统计每个国家星巴克的数量 starbucks.groupby(["Country"]).count() # 统计每个国家 每个省份 星巴克的数量 starbucks.groupby

    1.9K60

    MySQL中的ROW_NUMBER窗口函数简单了解下

    ROW_NUMBER() 是 MySQL8引入的窗口函数之一,它为查询结果集中的每一行分配一个唯一的顺序号(行号)。...去除重复数据:可以利用 ROW_NUMBER() 来给每一行打上唯一标识,之后选择每组的第一行,从而有效地去除重复数据。分组内排序:可以按组对数据进行排序,并为每个组中的行分配一个行号。...示例 1:为每个订单中的商品按价格排名可以为每个订单中的商品按价格进行排序,并为每个商品分配一个排名。...在这个查询中,ROW_NUMBER() 根据 order_id 和 product_name 为每一组商品打上编号,PARTITION BY 确保每个订单中同一个商品只保留一次。...分组排序:对每个分组内的数据进行排序并生成排名。数据排名:计算排名或为数据按某种规则分配顺序。

    1.9K10

    DataFrame和Series的使用

    中的列表非常相似,但是它的每个元素的数据类型必须相同 创建 Series 的最简单方法是传入一个Python列表 import pandas as pd s = pd.Series([ ' banana...='id') 2.使用 DataFrame的loc 属性获取数据集里的一行,就会得到一个Series对象 first_row = data.loc[941] first_row 3.可以通过 index...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...Series的唯一值计数 # 可以使用 value_counts 方法来获取Pandas Series 的频数统计 df.groupby(‘continent’) → dataframeGroupby...对象就是把continent取值相同的数据放到一组中 df.groupby(‘continent’)[字段] → seriesGroupby对象 从分号组的Dataframe数据中筛序出一列 df.groupby

    10910

    我的Python分析成长之路9

    pandas入门 统计分析是数据分析的重要组成部分,它几乎贯穿整个数据分析的流程。运用统计方法,将定量与定性结合,进行的研究活动叫做统计分析。而pandas是统计分析的重要库。...1.pandas数据结构     在pandas中,有两个常用的数据结构:Series和Dataframe  为大多数应用提供了一个有效、易用的基础。     ...通过几个统计值可简捷地表达地表示一组数据的集中趋势和离散程度。     ...13 print(group.mean()) #返回每组的均值 14 print(group.median()) #返回每组的中位数 15 print(group.cumcount()) #对每个分组中的成员进行标记...group.mean()) #返回每组的均值 print(group.median()) #返回每组的中位数 print(group.cumcount()) #对每个分组中的成员进行标记 print

    2.1K11

    使用Pandas_UDF快速改造Pandas代码

    “split-apply-combine”包括三个步骤: 使用DataFrame.groupBy将数据分成多个组。 对每个分组应用一个函数。函数的输入和输出都是pandas.DataFrame。...输入数据包含每个组的所有行和列。 将结果合并到一个新的DataFrame中。...此外,在应用该函数之前,分组中的所有数据都会加载到内存,这可能导致内存不足抛出异常。 下面的例子展示了如何使用groupby().apply() 对分组中的每个值减去分组平均值。...它定义了来自一个或多个的聚合。级数到标量值,其中每个pandas.Series表示组或窗口中的一列。 需要注意的是,这种类型的UDF不支持部分聚合,组或窗口的所有数据都将加载到内存中。...快速使用Pandas_UDF 需要注意的是schema变量里的字段名称为pandas_dfs() 返回的spark dataframe中的字段,字段对应的格式为符合spark的格式。

    7.1K20

    pandas每天一题-题目9:计算平均收入的多种方式

    如果对你有帮助,记得转发推荐给你的好友! 上期文章:pandas每天一题-题目8:去重计数的多种实现方式 后台回复"数据",可以下载本题数据集 如下数据: 数据描述: 此数据是订单明细表。...一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 quantity 是明细项数量 需求:计算订单平均收入?...按 order_id 分组即可 行3:由于收入需要计算,因此使用 apply 可以充分控制每一组汇总的细节 行4:参数 g 就是每个 order_id 的组,是一个表(DataFrame),这里是计算总收入...) .sum() .mean() ) 行2:直接计算收入,此时得到的是列(Series) 行3:对列分组,但是列里面没有分组依据(order_id),我们可以直接把数据传入。...注意这里不是列名(字符串),而是一列数据 行4:这里的 sum 是 groupby 后的操作,表达的是每一组的统计方式,我们需要求总订单收入 行5:上一步得到每个订单的收入,仍然是列(Series),直接求平均

    1.1K20

    Pandas图鉴(三):DataFrames

    还有两个创建DataFrame的选项(不太有用): 从一个dict的列表中(每个dict代表一个行,它的键是列名,它的值是相应的单元格值)。...如果你 "即时" 添加流媒体数据,则你最好的选择是使用字典或列表,因为 Python 在列表的末尾透明地预分配了空间,所以追加的速度很快。...但每个函数的做法略有不同,因为它们是为不同的用例量身定做的。...1:1的关系joins 这时,关于同一组对象的信息被存储在几个不同的DataFrame中,而你想把它合并到一个DataFrame中。 如果你想合并的列不在索引中,可以使用merge。...预定义函数(Pandas或NumPy函数对象,或其名称为字符串)。 一个从不同角度看数据的有用工具--通常与分组一起使用--是透视表。

    44420

    使用pandas处理数据获取TOP SQL语句

    TOPSQL语句 TOP SQL获取原理 通过前面的章节我们获取了每个小时v$sqlare视图里面的数据,这里我以monitor_oracle_diskreads 为例,具体数据如下图 ?...上面的排序是没有规律的,我们首先通过SQL语句查询出指定的数据库在15:00至16:00中所有SQL语句,并按照sql_id和sql_time降序排列(时间采用时间戳的形式) select * from...由于我选择时间段间隔一个小时,所以上面查询结果每个sql_id对应两行数据,其中16:00的数据在上面一行 接下来我们要pandas做的事情就是计算每个sql_id对应的disk_reads等栏位的差值...,具体步骤如下: 首先以SQL_ID进行分组 然后遍历各个分组,将各个组的第一个值减去最后一个值,将结果放入列表中供后续使用,这里注意一点,由于后面我们要计算平均每次的值,会有分母为零的状况,所以这里先做判断如果执行次数为...下面为程序的截图: 完整代码会在专题的最后放出,大家可根据代码进行调试来熟悉pandas的功能 ? 下节为如何讲如何在前端显示

    1.7K20

    利用Python统计连续登录N天或以上用户

    在有些时候,我们需要统计连续登录N天或以上用户,这里采用python通过分组排序、分组计数等步骤实现该功能,具体如下: 导入需要的库 import pandas as pd import numpy as...np 第一步,导入数据 原始数据是一份csv文件,我们用pandas的方法read_csv直接读取 df = pd.read_csv(r"C:\Users\Gdc\Documents\登录日志.csv...删除日志里重复的数据(同一天玩家可以登录多次,故而只需要保留一条即可) 我们看到上面处理过的数据,可以发现role_id为570837202的用户在1月8日存在多条记录,为方便后续计算,这里需要进行去重处理...分组排序是指将每个用户登录日期进行组内排序 采用groupby方法结合rank方法进行处理 df['辅助列'] = df["@timestamp"].groupby(df['role_id']).rank...第五步,分组计数 通过上一步,我们可以知道,计算每个用户date_sub列出现的次数即可算出该用户连续登录的天数 data = df.groupby(['role_id','date_sub']).count

    3.4K30
    领券