首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

飞速搞定数据分析与处理-day6-pandas入门教程(数据清洗)

清理空的值 空值 当你分析数据时,空的单元格有可能给你一个错误的结果。 ---- 删除行 处理空单元格的一种方法是删除包含空单元格的行。...替换空值 另一种处理空单元格的方法是插入一个新的值。这样,你就不必因为一些空单元格而删除整个行。...要想只替换一列的空值,请指定DataFrame的列名。...') x = df["Calories"].mean() df["Calories"].fillna(x, inplace = True) Mean = 平均值(所有数值的总和除以数值的数量)。...要解决这个问题,你有两个选择:删除这些行,或者将列中的所有单元格转换成相同的格式。 转换为正确的格式 在我们的数据框架中,有两个单元格的格式是错误的。

23040

卡方检验及其Python实现

所以得出结论,有95%的把握认为上述两个总体的分布不是相同的。...主要区别在于,独立性检验必须在二维表格中计算每个单元格的预期计数,而不是一维表格。要获得单元格的预期计数,需要将该单元格的行总计乘以该单元格的列总计,然后除以观察的总数。...可以通过np.outer()除以总的观察数快速获得表中所有单元格的理论值 expected = np.outer(voter_tab["row_totals"][0:5],...7.169321280162059 注意:调用此处使用sum()方法两次:第一次是获取列和,第二次是将列和相加,返回整个二维表的总和。...) print("P value") print(p_value) Critical value 15.50731305586545 P value 0.518479392948842 独立性测试的自由度等于每个变量中类别数减去

3.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    GPT 大型语言模型可视化教程

    现在,我们可以将这一串数字输入模型: 2 1 0 1 1 2 在三维视图中,每个绿色单元格代表一个正在处理的数字,每个蓝色单元格代表一个权重。...Softmax 如上一节所述,softmax 操作是自我关注的一部分,它也将出现在模型的最后。 它的目的是将一个向量的值归一化,使其总和为 1.0。然而,这并不像除以总和那么简单。...相反,每个输入值都要先进行指数化处理。 a = exp(x_1) 这样做的效果是使所有值都为正。有了指数化值的向量后,我们就可以用每个值除以所有值的总和。这将确保所有数值之和为 1.0。...由于所有指数化值都是正值,我们知道得出的值将介于 0.0 和 1.0 之间,这就提供了原始值的概率分布。 这就是 softmax 的原理:简单地将数值指数化,然后除以总和。 不过,还有一个小麻烦。...对于每一行,我们都会存储该行的最大值以及移位值和指数值之和。然后,为了生成相应的输出行,我们可以执行一小套操作:减去最大值、指数化和除以总和。 为什么叫 "softmax"?

    18310

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    默认情况下,它们返回沿轴axis=0的系列,这意味着可以获得列的统计信息: 如果需要每行的统计信息,使用axis参数: 默认情况下,缺失值不包括在描述性统计信息(如sum或mean)中,这与Excel...处理空单元格的方式一致,因此在包含空单元格的区域内使用Excel的AVERAGE公式将获得与应用于具有相同数字和NaN值(而不是空单元格)的系列的mean方法相同的结果。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...Region)的唯一值,并将其转换为透视表的列标题,从而聚合来自另一列的值。...这使得跨感兴趣的维度读取摘要信息变得容易。在我们的数据透视表中,会立即看到,在北部地区没有苹果销售,而在南部地区,大部分收入来自橙子。如果要反过来将列标题转换为单个列的值,使用melt。

    4.3K30

    Python数据分析作业二:Pandas库的使用

    然后,它从这些行中的 “交易额” 列中提取数值,并使用.sum()方法计算这些值的总和。...然后,使用.round(2)方法将平均值保留两位小数。最后,将结果存储在新的 Series 对象dff中。dff是一个包含每个姓名对应的平均交易额的 Series,其中索引是姓名,值是平均交易额。...10、统计df中缺失值的个数 df.isnull().sum().sum() 使用.isnull()方法检查 DataFrame 中的每个单元格是否为空,并返回一个布尔值的 DataFrame,其中 True...最后,使用groupby方法将合并后的 DataFrame 按照 “姓名” 和 “职级” 进行分组,并计算每个组中 “交易额” 列的总和。...结果是一个包含姓名、职级和对应交易额总和的 Series,其中索引是多级索引,包括 “姓名” 和 “职级”,值是交易额的总和。

    10200

    矩阵模拟!Transformer大模型3D可视化,GPT-3、Nano-GPT每一层清晰可见

    现在我们可以将这一系列数字输入到模型中:「2 1 0 1 1 2」 在3D视图中,每个绿色单元格表示一个正在处理的数字,每个蓝色单元格表示权重。...但这并不是简单地将各值除以总和那么简单。相反,每个输入值都会先被求指数。 a = exp(x_1) 这样处理的效果是让所有值变为正数。...一旦得到了一个指数化的值向量,就可以将每个值除以所有值的总和,从而确保所有值的和为1.0。由于所有指数化的值都是正的,那么最终的值将介于0.0和1.0之间,也就是为原始值提供了一个概率分布。...softmax的过程就是这样:简单地对值进行指数化处理,然后除以它们的总和。 不过,这里有一个小麻烦。 如果输入值很大,那么指数化后的值也会很大。...对于每一行,需要记录该行的最大值和经过移位与指数化处理后的值的总和。然后,为了得到相应的输出行,可以执行一系列操作:减去最大值,进行指数化处理,再除以总和。 那么,为什么叫「softmax」呢?

    1.5K10

    在数据框架中创建计算列

    图1 在pandas中创建计算列的关键 如果有Excel和VBA的使用背景,那么一定很想遍历列中所有内容,这意味着我们在一个单元格中创建公式,然后向下拖动。然而,这不是Python的工作方式。...pandas实际上提供了一种将字符串值转换为datetime数据类型的便捷方法。...因此,days.dt.days只是从timedelta对象返回天数的整数值。然后,将这些数字除以365,我们得到一列年数。...处理数据框架中NAN或Null值 当单元格为空时,pandas将自动为其指定NAN值。我们需要首先考虑这些值,因为在大多数情况下,pandas不知道如何处理它们。...我们可以使用.fillna()方法将NAN值替换为我们想要的任何值。出于演示目的,这里只是将NAN值替换为字符串值“0”。

    3.8K20

    使用Python Xlsxwriter创建Excel电子表格

    xl_range_abs()与上述方法类似,但它返回绝对引用,即当我们需要“$”符号来引用单元格时。...将原始数据(硬编码值)写入Excel 现在,已经熟悉了我们的“Excel”环境,让我们创建文件。我们将使用相同的文件名,因此前面的示例文件将被覆盖。...Worksheet.write()首先获取一组两个整数值,这是单元格的(行、列)表示法,在上面的示例中,我们将消息“hello excel”写入单元格A1。 记住保存并关闭工作簿。...创建公式并链接到单元格 使用xlsxwriter库编写Excel公式非常简单,我们只需在字符串中写入完全相同的Excel公式,然后.write()写入文件。...1写入单元格A1 ws_1.write(1,0,2) # 将值2写入单元格A2 ws_1.write(2,0,3) # 将值3写入单元格A3 ws_1.write(3,0,"=SUM(A1:A3)")#

    4.6K40

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    我将演示支持xls和xlsx文件扩展名的Pandas的read_excel方法。read_csv与read_excel相同,就不做深入讨论了,但我会分享一个例子。...默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ? 5、返回到DataFrame ?...五、数据计算 1、计算某一特定列的值 输出结果是一个系列。称为单列数据透视表: ? 2、计数 统计每列或每行的非NA单元格的数量: ? 3、求和 按行或列求和数据: ? 为每行添加总列: ?...4、将总列添加到已存在的数据集 ? 5、特定列的总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每列的总和 ?...由于Pandas中没有“Vlookup”函数,因此Merge用与SQL相同的备用函数。

    8.4K30

    使用R或者Python编程语言完成Excel的基础操作

    以下是一些其他的操作: 数据分析工具 数据透视表:对大量数据进行快速汇总和分析。 数据透视图:将数据透视表的数据以图表形式展示。 条件格式 数据条:根据单元格的值显示条形图。...色阶:根据单元格的值变化显示颜色的深浅。 图标集:在单元格中显示图标,以直观地表示数据的大小。 公式和函数 数组公式:对一系列数据进行复杂的计算。...目标 找出每个商店每月的总销售额,并按商店和日期排序。...目标 找出每个商店每月的总销售额,并按商店和日期排序。...Pandas提供了类似于R语言中的数据操作功能,使得数据处理变得非常直观和方便。 在Python中,处理表格数据的基础包是Pandas,但它本身已经是一个非常强大的库,提供了许多高级功能。

    23810

    《Python for Excel》读书笔记连载17:使用读写器包进行Excel文件操作(上)

    数据类型转换 这与前一点有关:在切换包时,不仅需要调整代码的语法,还需要注意这些包为相同单元格内容返回的不同数据类型。例如,对于空单元格,OpenPyXL返回None,而xlrd返回空字符串。...它们可以用A1表示法提供,也可以用Excel基于1的索引(1,1)作为行-列元组提供。first_cell的默认值为A1,而last_cell的默认值为所使用区域的右下角。...要获取单元格值,需要打开工作簿,其中data_only=True,其默认值为False,这将返回单元格的公式: 使用OpenPyXL写入 OpenPyXL在内存中构建Excel文件,并在调用save...但它目前也无法通过Conda获得,因此使用pip进行安装: pip install pyxlsb 读取工作表和单元格值如下: pyxlsb目前无法识别带有日期的单元格,因此必须手动将日期格式单元格中的值转换为...和pyxlsb不同,xlrd使用值返回单元格区域的尺寸,而不是使用sheet.nrows和sheet.ncols的使用区域。

    3.8K20

    pandas每天一题-题目5:统计空值数量也有多种实现方式

    这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。...这个项目从基础到进阶,可以检验你有多么了解 pandas。 我会挑选一些题目,并且提供比原题库更多的解决方法以及更详尽的解析。 计划每天更新一期,希望各位小伙伴先自行思考,再查看答案。...一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 quantity 是明细项数量 需求:请列出每一列的缺失值、缺失百分比。...方法,返回每个单元格是否为空: df['item_price'].isna() 返回结果仍然是一个 Series(一列) Python 中 True 是1,False 是0 只需要这基础上求和,即可得到...,表示新增列 推荐阅读: Python干货,不用再死记硬背pandas关于轴的概念?

    99441

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...我们将使用 =IF(A2 的公式,将其拖到新存储列中的所有单元格。 使用 numpy 中的 where 方法可以完成 Pandas 中的相同操作。...相同的操作在下面的Pandas中表示。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    1000+倍!超强Python『向量化』数据处理提速攻略

    这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...当条件满足且为True时,将返回第二个参数,否则返回第三个参数。 看下面的例子: numpy.where()它从我们的条件中创建一个布尔数组,并在条件为真或假时返回两个参数,它对每个元素都这样做。...np.select将按从前到后的顺序对每个数组求值,当数据集中的某个给定元素的第一个数组为True时,将返回相应的选择。所以操作的顺序很重要!像np.where。...我们要做的就是在.dt之前加上.days ,效果很好。 完成此计算的另一种更加Numpy向量化的方法是将Numpy数组转换为timedeltas,获得day值,然后除以7。...为了解决这个问题,我们对Pandas中的一个series使用.shift()将前一行移到相同的级别。一旦它们被转移到相同的级别,我就可以使用np.select()执行相同的条件向量化方法了!

    6.8K41

    Pandas图鉴(二):Series 和 Index

    Pandas没有像关系型数据库那样的 "唯一约束"(该功能[4]仍在试验中),但它有一些函数来检查索引中的值是否唯一,并以各种方式删除重复值。 有时,但一索引不足以唯一地识别某行。...df.merge--可以用名字指定要合并的列,不管这个列是否属于索引。 按值查找元素 考虑以下Series对象: 索引提供了一种快速而方便的方法,可以通过标签找到一个值。但是,通过值来寻找标签呢?...Pandas有df.insert方法,但它只能将列(而不是行)插入到数据框架中(而且对序列根本不起作用)。...这个惰性的对象没有任何有意义的表示,但它可以是: 迭代(产生分组键和相应的子系列--非常适合于调试): groupby 以与普通系列相同的方式进行查询,以获得每组的某个属性(比迭代快): 所有操作都不包括...NaNs 在这个例子中,根据数值除以10的整数部分,将系列分成三组。

    33720

    Excel实战技巧:从Excel预测的正态分布中返回随机数

    可以将这些公式复制到它们的列中,以创建一个包含数千个可能结果的表格。然后,分析表格以确定一段时间内的平均销售额,以及该估计值的可变性。 扩展模拟 扩展的方法是不同的。...RANDBETWEEN(bottom,top)返回参数bottom和参数top之间的随机整数。 这两个函数返回的结果出现在bottom和top之间任何地方的机会相同。...为了说明这一点,我复制了RAND函数并将其粘贴到一列中的10000个单元格中,然后将这些值分成10组大小相等区间,创建了一个直方图,显示一个值在每个区间中出现的次数。...图4 在单元格中输入公式: A1:=NORM.INV(RAND(),95,12.5) 将该公式向下复制直到单元格A10000。 在列C中显示列A中的最大值和最小值。...在列E中按下面操作: E2:=C2 E3:=E2+($C$3-$C$2)/9 将E3向下复制至E11。注意,单元格E11中的数值应该等于单元格C3中的最大值。

    2.1K10

    问与答130:如何比较两列文本是否完全相同?

    例如,列A中有一系列文本,列B中也有一系列文本,比较A1中的文本是B1中的文本是否完全相同,A2与B2中的文本是否完全相同,……,等等。...然而,假设想测试“Ant”是否与“ant”完全相同但不允许使用EXACT函数,如何做? 一种方法是将两个文本值转换为它们的ASCII等效值,然后以某种方式比较这两组值。...不能比较这些值的总和,因为对于不同的文本(例如“Aa”和“aA”),总和是相同的。因此,应以其他方式比较它们的ASCII值。...基于上述原理,如果想要比较两列中的文本是否完全相同,对于单元格A1和B1的比较来说,可以使用公式: =SUM((IFERROR(CODE(MID(A1,{1;2;3;4;5;6;7;8;9;10},1)...),"")IFERROR(CODE(MID(B1,{1;2;3;4;5;6;7;8;9;10},1)),""))+0) 当单元格A1和B1中的文本不匹配时,将返回一个非零值,并且这个公式应该适用于支持

    2K30

    针对SAS用户:Python数据分析库pandas

    它们是: 方法 动作 isnull() 生成布尔掩码以指示缺失值 notnull() 与isnull()相反 drona() 返回数据的过滤版本 fillna() 返回填充或估算的缺失值的数据副本 下面我们将详细地研究每个方法...它将.sum()属性链接到.isnull()属性来返回DataFrame中列的缺失值的计数。 .isnull()方法对缺失值返回True。...通过将.sum()方法链接到.isnull()方法,它会生成每个列的缺失值的计数。 ? 为了识别缺失值,下面的SAS示例使用PROC格式来填充缺失和非缺失值。...fillna()方法返回替换空值的Series或DataFrame。下面的示例将所有NaN替换为零。 ? ?...正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。

    12.1K20

    【算法专题】回溯算法

    例如,数组[2, 5, 6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。 给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。...0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28 示例 3: 输入:nums = [3, 4, 5, 6, 7, 8] 输出:480 解释:每个子集的全部异或总和值之和为 480...对于九宫格,我们可以以行和列除以 3 得到的商作为九宫格的坐标,并使用一个三维数组来记录每个数字在每一个九宫格中是否出现。在检查是否存在冲突时,只需检查行、列和九宫格里对应的数字是否已被标记。...初始化定义: 定义行、列、九宫格标记数组以及找到可行方法的标记变量,将它们初始化为 false; 定义一个数组来存储每个需要处理的位置; 将题目给出的所有元素的行、列以及九宫格坐标标记为 true; 将所有需要处理的位置存入数组...如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。

    17110
    领券