首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas tricks 之 transform的用法

为了使每行都出现相应order的总金额,需要使用“左关联”。我们使用源数据在左,聚合后的总金额数据在右(反过来也可)。不指定连接key,则会自动查找相应的关联字段。...3.计算占比 有了前面的基础,就可以进行最终计算了:直接用商品金额ext_price除以订单总额sum_price。并赋值给新的列pct即可。 ?...4.格式调整 为了美观,可以将小数形式转换为百分比形式,自定义函数即可实现。 ? 思路二: 对于上面的过程,pandas中的transform函数提供了更简洁的实现方式,如下所示: ?...具体可以参考官方文档: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transform.html...在上面的示例数据中,按照name可以分为三组,每组都有缺失值。用平均值填充是一种处理缺失值常见的方式。此处我们可以使用transform对每一组按照组内的平均值填充缺失值。 ?

2.1K30

Pandas之实用手册

pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...除了 sum(),pandas 还提供了多种聚合函数,包括mean()计算平均值、min()、max()和多个其他函数。1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。...Pandas轻松做到。通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。...classification'].count().reset_index(name='group_counts').sort_values(['group_counts'], ascending=False)计算组平均值

22510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数学和统计方法

    3、众数:出现次数最多的那个数 4、加权平均数:加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。...加权平均值的大小不仅取决于 总体中各单位的数值(变量值)的大小,而且取决于各数值出现的次数(频数),由于各数值出现的次数对其在平均数中的影响起着权衡 轻重的作用,因此叫做权数。...因为加权平均值是根据权数的不同进行的平均数的计算,所以又叫加权平均数。...将一维数组转成Pandas的Series,然后调用mode()方法 将二维数组转成Pandas的DataFrame,然后调用mode()方法 Numpy的axis参数的用途 axis=0代表行...axis=1求每行的和。 • 行:每行对应一个样本数据 • 列:每列代表样本的一个特征 数组对应到现实中的一种解释: • 对于机器学习、神经网络来说,不同列的量钢是相同的,收敛更快。

    13010

    python scipy.stats计算双独立样本假设检验(2 sample independent test)

    #本节内容学习用python统计包scipy自动计算双独立假设检验: ''' 双独立(independent)样本检验(ttest_ind)''' import numpy as np import pandas...=',A_mean) print('B版本的平均值=',B_mean)''' 这里要区别:数据集的标准差,和样本标准差 数据集的标准差公式除以的是n,样本标准差公式除以的是n-1。...样本标准差,用途是用样本标准差估计出总体标准差pandas计算的标准差,默认除以的是n-1,也就是计算出的是样本标准差''''''#样本标准差a_std=dataA.std() b_std=dataB.std...()print('A版本样本标准差=',a_std) print('B版本样本标准差=',b_std) #零假设:A版本和B版本没有差别,也就是A版平均值=B版本平均值 #备选假设:A版本和B版本有差别...,也就是A版本平均值不等于B版本平均值 #因为有2组样本,是不同的人,选择双独立样本检验.两样本均值比较,双尾检验.sns.distplot(dataA) plt.title('A版本数据集分布') plt.show

    2.4K20

    Pandas速查卡-Python数据科学

    如果你对pandas的学习很感兴趣,你可以参考我们的pandas教程指导博客(http://www.dataquest.io/blog/pandas-python-tutorial/),里面包含两大部分的内容...) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1...)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换) df.pivot_table(index=col1,values=[col2,col3],aggfunc...=max) 创建一个数据透视表,按col1分组并计算col2和col3的平均值 df.groupby(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(...np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数 加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同

    9.2K80

    Python数据分析作业二:Pandas库的使用

    一、前言   Pandas(Python Data Analysis Library)是基于是基于 NumPy 的数据分析模块,它提供了大量标准数据模型和高效操作大型数据集所需的工具,可以说 Pandas...161393.0 7、使用df中的数据分组统计每个人的交易额平均值(保留2位小数),将统计结果放入dff变量中并显示该结果 dff = df.groupby('姓名')['交易额'].mean().round...然后,使用.round(2)方法将平均值保留两位小数。最后,将结果存储在新的 Series 对象dff中。dff是一个包含每个姓名对应的平均交易额的 Series,其中索引是姓名,值是平均交易额。...然后,使用.sum()方法两次对这个布尔值的 DataFrame 进行求和,第一次对每列求和,第二次对每行的结果再求和。...最后,使用groupby方法将合并后的 DataFrame 按照 “姓名” 和 “职级” 进行分组,并计算每个组中 “交易额” 列的总和。

    10300

    用9行python代码演示推荐系统里的协同过滤算法

    具体来说,它在根据经验预测用户对一组项目的偏好。...从数学上讲,推荐任务设置为: 用户集 (U) 要推荐给 用户集(U)的一组项目 (I) 学习一个基于用户过去交互数据的函数,预测项目 I 到 U 的可能性 根据用于推理的数据,推荐系统大致分为两类: 基于内容的过滤...通过计算所选用户评分的加权平均值来推断活跃用户。 协同过滤系统关注用户和项目之间的关系。项目的相似度由对这两个项目进行评分的用户对这些项目的评分的相似度来确定。...在下面的矩阵中,每行代表一个用户,而列对应不同电影。余弦相似度是查找向量相似度所需的最简单算法。矩阵中,每一行代表一个用户,而每一列对应不同的电影,每个单元格代表用户对该电影的评分。...然后除以权重和进行归一化。基于用户的相似的和他们的评分critics来达到推荐给Toby用户的每个电影打分。

    60010

    机器学习库:pandas

    写在开头 在机器学习中,我们除了关注模型的性能外,数据处理更是必不可少,本文将介绍一个重要的数据处理库pandas,将随着我的学习过程不断增加内容 基本数据格式 pandas提供了两种数据类型:Series...= pd.merge(df1, df2, on='name') print(merged_df) on='name'指定函数以name这一列来合并表格 分组函数groupby 想象一个场景,一个表中每行记录了某个员工某日的工作时长...如上图所示,groupby函数返回的是一个分组对象,我们使用list函数把它转化成列表然后打印出来,可以看到成功分组了,我们接下来会讲解如何使用聚合函数求和 聚合函数agg 在上面的例子中我们已经分好了组,...pd.DataFrame(a, index=None) print(p.isnull().sum()) 填充缺失值 因为有些机器学习模型无法处理缺失值,我们必须将缺失值补充好,可以用0填充,也可以用平均值填充...,代码如下 # 0填充 print(p.fillna(0)) # 平均值填充 print(p.fillna(p["a"].mean()))

    14510

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何对数据进行描述性统计,并讲解了将数据聚合到子集的两种方法...本节首先介绍pandas的工作原理,然后介绍将数据聚合到子集的两种方法:groupby方法和pivot_table函数。...例如,数据点的数量是一个简单的描述性统计,而平均值,如均值、中位数或众数是其他流行的例子。数据框架和系列允许通过sum、mean和count等方法方便地访问描述性统计数据。...例如,下面是如何获得每组最大值和最小值之间的差值: df.groupby(["continent"]).agg(lambdax: x.max() - x.min()) 在Excel中获取每个组的统计信息的常用方法是使用透视表...下面的数据框架中的数据的组织方式与数据库中记录的典型存储方式类似,每行显示特定地区指定水果的销售交易: 要创建数据透视表,将数据框架作为第一个参数提供给pivot_table函数。

    4.3K30

    如何区分并记住常见的几种 Normalization 算法

    加上第 N 个样本第1个通道,求平均,得到通道 1 的均值(注意是除以 N×H×W 而不是单纯除以 N,最后得到的是一个代表这个 batch 第1个通道平均值的数字,而不是一个 H×W 的矩阵)。...类比为一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 W 个字符。BN 求均值时,相当于把这些书按页码一一对应地加起来(例如第1本书第36页,第2本书第36页......)...GN 计算均值和标准差时,把每一个样本 feature map 的 channel 分成 G 组,每组将有 C/G 个 channel,然后将这些 channel 中的元素求均值和标准差。...类比为一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 W 个字符。 计算均值时 BN 相当于把这些书按页码一一对应地加起来(例如:第1本书第36页,加第2本书第36页......)...,再除以每个页码下的字符总数:N×H×W,因此可以把 BN 看成求“平均书”的操作(注意这个“平均书”每页只有一个字) LN 相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W,即求整本书的

    2.3K20

    为什么中位数(大多数时候)比平均值好

    这里我们使用Pandas和世界人口的数据来做说明。 ? 首先,我们应该把数据用于探索。我在Kaggle上找到了一个很好的数据集:这个国家的统计数据。...现在让我们转到平均值和中值。这两个值都显示了行中心的数字。但方式不同。 平均值是一个平均值(这好像是废话),我们可以通过汇总一行中的所有值,然后将结果除以它们的数量来计算它。让我们看看人口。...为了计算平均值,我们应该将所有国家的人口值相加,然后除以数据集中的国家数。幸运的是,pandas可以为我们做这件事。 ? 这个数字表明,在一个正常的国家,平均生活着大约3300万人。...如果我们将总体值从最小到最大排序,则在该排序行的中间位置,中值为: ? 根据中位数,一个国家的平均人口只有大约550万。根据平均数,它比平均人口要小得多。怎么会这样?...对于平均值的计算来说这些都是异常值 因为这就是均值的本质——把所有值都考虑在内。而中位数没有这个缺点。

    3.8K10

    数据挖掘学习小组之(统计学)

    比起演算,我打算将更多的精力放在应该怎么去用这些知识,算的过程,就交给代码吧。...这三个四分位数将整个数据集合分成四等分。 但你以为这就结束了? too young too native! 我第一次用pandas算,算出来跟百度百科不一样;用numpy,还是不一样!...numpy和pandas,应该对应基于N-1的这种。 平均数 平均数包括:算数平均、加权平均、几何平均。 算术平均数 平均数这个好理解,一堆数字,求和再除以个数嘛!反映的是一组数据集合的集中趋势 。...假设有一个定比数据集合,集合中的数值分别为x1,x2,…,xn,且所有的数值均大于0,那么该数据集合的几何平均值的计算公式为: ?...极差 最大值与最小值的差,极差反映的是一组数据的变化范围。 平均差 一堆数据中的每一个数,与算术平均值的差的绝对值的算术平均值。 四分位极差 四分位数的第三个,减去第一个,得到的值,就是四分位极差。

    85920

    numpy与pandas

    np.sum(f) # 矩阵所有元素求和np.sum(f,axis=1) # axis表示维度,这里axis=1表示每列求和np.min(f) # 矩阵求最小值np.min(f,axis=0) # 矩阵求每行最小值...2到13np.argmin(a) # a矩阵最小值索引,返回的均是一个数(如果a是二维数组,会将数据平铺成一维)np.argmax(a) # a矩阵最大值索引np.mean(a) # a矩阵所有元素平均值...,还可以:a.mean()np.average(a) # a矩阵所有元素平均值,还可以加权平均np.median(a) # a矩阵中所有元素中位数np.cumsum(a) # a矩阵中累加,新矩阵第一个位置是原来的值...hist box kde area scatter hexbin pieax = df.plot.scatter(x='a',y='b',colorama='Blue',label='class1') #一组df.plot.scatter...(x='a',y='c',colorama='Red',label='class2',ax=ax) #两组一起画在一张图plt.show()"""""""# pandas获取excel所有sheet名df

    12110

    数据的描述性统计与python实现

    参考链接: Python中的统计函数 1(中位数和平均值的度量) 数据的描述性统计与python实现  使用pandas导入数据  导入需要的包  import pandas as pd import...snd.height.value_counts().sort_index().plot(kind = 'bar') 数据的集中趋势  众数:出现频率最多的取值 中位数:按大小排序后中间那个取值(50%分位数) 平均数:所有数值加总后除以数量...,然后加总求和得到总体值,再除以总的单位数。...以平均值与中位数之差对标准差之比率来衡量偏斜的程度:  用SK表示偏斜系数:正态分布左右是对称的,偏度系数为0,偏态系数小于0,因为平均数在众数之左,是一种左偏的分布,又称为负偏。...如果该比值绝对值大于2,将拒绝正态性。

    77520

    懂Excel轻松入门Python数据分析包pandas(二十一):透视表

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节文章最后我随手使用了 pandas 中的透视表操作,之后有些小伙伴询问我相关的问题。...正好 pandas 的 pivot_table 也是与 Excel 透视表对应。本文简单教你入门使用 pandas 完成透视表功能。...这种设置不会影响数据类型,比如把此结果输出到 Excel ,仍然是小数 - 行9:每行(axis=1)做运算(apply),行中每个数字(r) 除以(/) 行中剔除最后一个数据(r[:-1])的总和(sum...文章中并没有给出 pandas 代码。 但是,原始数据是没有字段可以直接反映是否有结伴上船的情况。...解决思路就是:把 ticket 列内容相同的归为一组,组内有多于1行记录的,就是有小伙伴一起上船的 相信一直看本系列的小伙伴马上就知道,这在 pandas 中不就是分组操作吗!

    1.7K20
    领券