首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Modin,只需一行代码加速你的Pandas

    它的语法和pandas非常相似,因其出色的性能,能弥补Pandas在处理大数据上的缺陷。 本文会解释何时该用Modin处理数据,并给出Modin的一些真实案例。...Pandas是python数据分析最常用的工具库,数据科学领域的大明星。...正因为大多人都熟悉了Pandas的语法结构,所以想换一种新的数据分析库并不容易,会增加很多的学习成本。 如果在保留Pandas语法和API的前提下,又能增加大数据处理能力,这将会一个完美的解决方案。...Modin宣称改一行代码就可以加速pandas,只需将: import pandas as pd 改为 import modin.pandas as pd 除了速度更快外,其他要用的的语法、api和...但Dask对Pandas并没有很好的兼容性,没办法像Modin那样,只需改变一行代码,就可以轻松使用Pandas处理大数据集。 「Modin vs.

    2.2K30

    问与答113:如何定位到指定的列并插入公式到最后一行?

    引言:本文整理自vbaexpress.com论坛,供有兴趣的朋友学习参考。 Q:我有多个工作表,每个工作表中都有一个Date列,但其位置都不相同,如下图1至图3所示。 ? 图1 ? 图2 ?...例如,对上图1所示的工作表,拆分成如下图4所示。 ? 图4 如何定位到Date列,然后在其右侧插入4列,并使用公式在各列输入相应的内容?...A:可以使用一段简单的代码,如下: Sub WHATIWANTITTODO() Dim r As Range Set r = Cells.Find("Date") r.Offset...代码使用Find方法在工作表中查找内容为“Date”的单元格。 2. 在该单元格右侧插入4列。 3. 使用Array函数分别在每列的开头输入相应的内容。 4. 使用RC样式输入公式。 5....初学者注意体会Resize属性、Offset属性的使用。

    1.8K30

    Pandas中的数据分类

    --MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...0 语文 1 数学 1 数学 0 语文 0 语文 1 数学 1 数学 0 语文 dtype: object type(df1) # Series数据 pandas.core.series.Series...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \* 2, dtype="category") data4 0...,不改变分类的数量 reorder_categories:类进行排序 set_categories:用指定的一组新类替换原来的类,可以添加或者删除

    8.6K20

    一行“无用”的枚举反使Rust执行效率提升10%,编程到最后都是极致的艺术

    最近不少读者都留言说博客中的代码越来越反哺归真,但讨论的问题反倒越来越高大上了,从并发到乱序执行再到内存布局各种放飞自我。...有详细介绍,其中反汇编的方法如下: rustc -g rust源文件名.rs objdump -S 编译后的文件名 一行无关代码,却让效率提高10%?...: M:代表该缓存行中的内容被修改,并且该缓存行只被缓存在该CPU中。...这个状态代表缓存行的数据和内存中的数据不同。 E:代表该缓存行对应内存中的内容只被该CPU缓存,其他CPU没有缓存该缓存对应内存行中的内容。这个状态的缓存行中的数据与内存的数据一致。...I:代表该缓存行中的内容无效。 S:该状态意味着数据不止存在本地CPU缓存中,还存在其它CPU的缓存中。这个状态的数据和内存中的数据也是一致的。不过只要有CPU修改该缓存行都会使该行状态变成 I 。

    81900

    Pandas中的数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...extract() 在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列 extractall() 在每个元素上调用re.findall,为每个匹配返回一行...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。

    13510

    掌握pandas中的transform

    pandas中,transform是一类非常实用的方法,通过它我们可以很方便地将某个或某些函数处理过程(非聚合)作用在传入数据的每一列上,从而返回与输入数据形状一致的运算结果。...本文就将带大家掌握pandas中关于transform的一些常用使用方式。...图1 2 pandas中的transform 在pandas中transform根据作用对象和场景的不同,主要可分为以下几种: 2.1 transform作用于Series 当transform作用于单列...,在执行运算时接收的输入参数是对应的「整列数据」,所以我们可以利用这个特点实现诸如「数据标准化」、「归一化」等需要依赖样本整体统计特征的变换过程: # 利用transform进行数据标准化 penguins...版本之后为transform引入了新特性,可以配合Cython或Numba来实现更高性能的数据变换操作,详细的可以阅读( https://github.com/pandas-dev/pandas/pull

    1.6K20

    C++中如何获取终端输出的行数,C++清除终端输出特定的一行内容

    单纯使用C++ 进行编程的时候,很多输出的调试信息都是直接在终端输出的,那么有的时候就会对终端输出的信息有一定的要求,那么如何进行定位终端输出的信息到底输出到了哪一行呢?...如何清除特定的一行终端内容呢? 对于上面的两个问题,相信也会有很多小伙伴有同样的烦恼,那么就让我们一起来解决这个麻烦吧。...= b.dwCursorPosition.X; *y = b.dwCursorPosition.Y; } int main() { int x, y; cout 一行内容...setpos(0, 2); // 回到坐标(0,2)位置进行标准输入输出 (第三行第一个字节位置) cout 的情况下,清空原本行的内容 setpos...(0, 2); // 回到坐标(0,2)位置进行标准输入输出 cin >> x; setpos(x, y); //回到记录的位置 return 0; } 通过上面的代码demo就能够实现终端清空某一特定行的内容的操作了

    4K40

    使用Pandas&NumPy进行数据清洗的6大常用方法

    在这个教程中,我们将利用Python的Pandas和Numpy包来进行数据清洗。...() 函数按元素清洗整个数据集 重命名 columns 为一组更易识别的标签 滤除 CSV文件中不必要的 rows 下面是要用到的数据集: BL-Flickr-Images-Book.csv : 一份来自英国图书馆包含关于书籍信息的...pandas将会使用列表中的每个元素,然后设置State到左边的列,RegionName到右边的列。...因此,我们需要做两件事: 移除第一行并设置header为第一行 重新命名列 当我们读CSV文件的时候,可以通过传递一些参数到read_csv函数来移除行和设置列名称。...掌握数据清洗非常重要,因为它是数据科学的一个大的部分。你现在应该有了一个如何使用pandas和numpy进行数据清洗的基本理解了。更多内容可参考pandas和numpy官网。

    3.2K20

    使用Pandas&NumPy进行数据清洗的6大常用方法

    在这个教程中,我们将利用Python的Pandas和Numpy包来进行数据清洗。...() 函数按元素的清洗整个数据集 重命名 columns 为一组更易识别的标签 滤除 CSV文件中不必要的 rows 下面是要用到的数据集: BL-Flickr-Images-Book.csv - 一份来自英国图书馆包含关于书籍信息的...pandas将会使用列表中的每个元素,然后设置State到左边的列,RegionName到右边的列。...因此,我们需要做两件事: 移除第一行并设置header为第一行 重新命名列 当我们读CSV文件的时候,可以通过传递一些参数到read_csv函数来移除行和设置列名称。...掌握数据清洗非常重要,因为它是数据科学的一个大的部分。你现在应该有了一个如何使用pandas和numpy进行数据清洗的基本理解了。

    3.5K10
    领券