首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python+pandas+matplotlib控制不同曲线的属性

Python程序设计实验指导书》(ISBN:9787302525790),董付国,清华大学出版社 图书详情:https://item.jd.com/12592638.html =========== pandas...的Series和DataFrame结构的plot()方法可以自动调用matplotlib的功能进行绘图,在数据分析和处理时可以很方便地进行可视化。...这样的图虽然已经包含了必需的图形信息,但还是缺少一些元素,例如图形标题、纵轴标签,可以设置DataFrame的plot()方法的title参数来实现图形标题(可以使用help()函数查看plot()方法完整用法和所有参数含义...),使用这样方式绘制的图形也是可以通过pyplot进行控制的,这样就可以使用pyplot的ylabel()函数来设置图形纵轴标签了,例如 ?...类似地,通过pyplot的其他函数还可以对图形坐标轴进行更多设置,可以参考公众号“Python小屋”之前推送过的文章。 上面绘制的图形中,两条曲线的线型、线宽都是一样的,只是颜色不同。

1.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas DataFrame 中的自连接和交叉连接

    在 SQL 中经常会使用JOIN操作来组合两个或多个表。有很多种不同种类的 JOINS操作,并且pandas 也提供了这些方式的实现来轻松组合 Series 或 DataFrame。...SQL语句提供了很多种JOINS 的类型: 内连接 外连接 全连接 自连接 交叉连接 在本文将重点介绍自连接和交叉连接以及如何在 Pandas DataFrame 中进行操作。...自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...这个示例数据种两个 DataFrame 都没有索引所以使用 pandas.merge() 函数很方便。...总结 在本文中,介绍了如何在Pandas中使用连接的操作,以及它们是如何在 Pandas DataFrame 中执行的。这是一篇非常简单的入门文章,希望在你处理数据的时候有所帮助。

    4.3K20

    PySpark SQL——SQL和pd.DataFrame的结合体

    导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...功能也几乎恰是这样,所以如果具有良好的SQL基本功和熟练的pandas运用技巧,学习PySpark SQL会感到非常熟悉和舒适。...Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...pandas.DataFrame中类似的用法是query函数,不同的是query()中表达相等的条件符号是"==",而这里filter或where的相等条件判断则是更符合SQL语法中的单等号"="。...中相应关键字的操作,并支持不同关联条件和不同连接方式,除了常规的SQL中的内连接、左右连接、和全连接外,还支持Hive中的半连接,可以说是兼容了数据库的数仓的表连接操作 union/unionAll:表拼接

    10K20

    python数据科学系列:pandas入门详细教程

    仅支持数字索引,pandas的两种数据结构均支持标签索引,包括bool索引也是支持的 类比SQL的join和groupby功能,pandas可以很容易实现SQL这两个核心功能,实际上,SQL的绝大部分DQL...其中,由于pandas允许数据类型是异构的,各列之间可能含有多种不同的数据类型,所以dtype取其复数形式dtypes。...4 合并与拼接 pandas中又一个重量级数据处理功能是对多个dataframe进行合并与拼接,对应SQL中两个非常重要的操作:union和join。...inner、left、right和outer4种连接方式,但只能实现SQL中的等值连接 join,语法和功能与merge一致,不同的是merge既可以用pandas接口调用,也可以用dataframe对象接口调用...pandas集成了matplotlib中的常用可视化图形接口,可通过series和dataframe两种数据结构面向对象的接口方式简单调用。

    15K20

    加载大型CSV文件到Pandas DataFrame的技巧和诀窍

    因此,这个数据集是用来说明本文概念的理想数据集。 将CSV文件加载到Pandas DataFrame中 首先,让我们从加载包含超过1亿行的整个CSV文件开始。...我想看看加载DataFrame需要多长时间,以及它的内存占用情况: import time import pandas as pd start = time.time() df = pd.read_csv...行数据加载到了Pandas DataFrame中。...与前面的部分一样,缺点是在加载过程中必须扫描整个CSV文件(因此加载DataFrame需要22秒)。 总结 在本文中,介绍了许多从CSV文件加载Pandas DataFrame的技巧。...通常情况下,没有必要将整个CSV文件加载到DataFrame中。通过仅加载所需的数据,你不仅可以节省加载所需数据的时间,还可以节省内存,因为DataFrame需要的内存更少。

    47810

    数据分析之Pandas VS SQL!

    文章转载自公众号:数据管道 Abstract Pandas是一个开源的Python数据分析库,结合 NumPy 和 Matplotlib 类库,可以在内存中进行高性能的数据清洗、转换、分析及可视化工作...Pandas简介 Pandas把结构化数据分为了三类: Series,可以理解为一个一维的数组,只是index可以自己改动。 DataFrame,一个类似于表格的数据类型的2维结构化数据。...及列label,快速定位DataFrame的元素; iat,与at类似,不同的是根据position来定位的; ?...现在看一下不同的连接类型的SQL和Pandas实现: INNER JOIN SQL: ? Pandas: ? LEFT OUTER JOIN SQL: ? Pandas: ?...总结: 本文从Pandas里面基本数据结构Dataframe的固定属性开始介绍,对比了做数据分析过程中的一些常用SQL语句的Pandas实现。

    3.2K20

    3小时入门numpy,pandas,matplotlib

    使用Python中的三个库可以优雅地进行数据分析,得到一只野生的Matlab,这三个库是numpy,pandas 和 matplotlib。...numpy是高性能科学计算和数据分析的基础包,其array多维数组拥有丰富的数据类型,基于向量化技术可以有效代替循环,代码简单速度极快。...以numpy为基础的pandas中的数据框dataframe集数据分析工具万象于一身,可以像array数组一样进行复杂计算,又可以像excel一样地操作数据,又可以像SQL一样地操作数据。...二、pandas 库 pandas中的DataFrame是交互性最好在数据分析中使用最广泛的数据结构。...pandas 中常用的数据结构有: (1)Series:一维数组,与Numpy中的一维array类似。 Series中只允许存储相同的数据类型。 (2)DataFrame:二维的表格型数据结构。

    1.2K42

    Pandas数据分析之Series和DataFrame的基本操作

    转自:志学python 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据...fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充...三、索引、选取和过滤 针对 Series ? 需要注意一点的是,利用索引的切片运算与普通的 Python 切片运算不同,其末端是包含的,既包含最后一个的项。比较: ? 赋值操作: ?...针对 DataFrame ? DataFrame 中的 ix 操作: ?...针对 DataFrame 对齐操作会同时发生在行和列上,把2个对象相加会得到一个新的对象,其索引为原来2个对象的索引的并集: ?

    1.3K20

    Pandas详解

    同时Pandas还可以使用复杂的自定义函数处理数据,并与numpy、matplotlib、sklearn、pyspark、sklearn等众多科学计算库交互。...数据类型 Pandas的基本数据类型是dataframe和series两种,也就是行和列的形式,dataframe是多行多列,series是单列多行。...读取数据 pandas支持读取和输出多种数据类型,包括但不限于csv、txt、xlsx、json、html、sql、parquet、sas、spss、stata、hdf5 读取一般通过read*函数实现...在pandas中选择数据子集非常简单,通过筛选行和列字段的值实现。 具体实现如下: 4....分组计算 在sql中会用到group by这个方法,用来对某个或多个列进行分组,计算其他列的统计值。 pandas也有这样的功能,而且和sql的用法类似。 image 7.

    1.8K65

    猫头虎 分享:Python库 Pandas 的简介、安装、用法详解入门教程

    Pandas 的主要数据结构包括: Series:一维数组,类似于Python中的列表或Numpy中的一维数组。 DataFrame:二维表格数据结构,类似于电子表格或SQL表。...您可以使用以下命令来安装这些依赖: pip install numpy matplotlib Pandas 的基本用法详解 掌握 Pandas 的基本操作是数据分析的第一步。...以下是 Pandas 最基础的一些操作和用法介绍。 ️ 1. 创建 Series 和 DataFrame Pandas 提供了简单的方法来创建 Series 和 DataFrame。...数据选择与过滤 Pandas 允许对 DataFrame 进行各种选择和过滤操作。...将数据存储在数据库中,通过 SQL 查询进行分步操作。 利用 HDF5 格式存储数据,以提高读取效率。 Q: Pandas 可以处理哪些数据类型?

    25310

    Python:dataframe写入mysql时候,如何对齐DataFrame的columns和SQL的字段名?

    问题: dataframe写入数据库的时候,columns与sql字段不一致,怎么按照columns对应写入?...s,%s、、、、)values(%s,%s,%s、、、)" 都在引号里面,n个 %s 和一个 %s 也没什么区别吧!!!...所以我就想着把整个字段名和逗号一起拼接成一个字符串 实例: import pymysql import pandas as pd import numpy as np # 定义函数 def w_sql(...所以又read_sql_table读取整个数据库,对dataframe 进行布尔筛选 … 最终拼接了个主键,用ignore忽略重复——注意去除警告,否则多次运行就会一片红红火火 这里给出警告过滤的代码...char/varchar ③commit的缩进位置 因为是dataframe一行行执行写入,最后循环完一整个dataframe统一commit 当数据量大的时候commit的位置很影响效率 connent.commit

    1K10

    Pandas常用命令汇总,建议收藏!

    凭借其广泛的功能,Pandas 对于数据清理、预处理、整理和探索性数据分析等活动具有很大的价值。 Pandas的核心数据结构是Series和DataFrame。...Series是一个一维标记数组,可以容纳多种数据类型。DataFrame则是一种二维表状结构,由行和列组成,类似于电子表格或SQL表。...利用这些数据结构以及广泛的功能,用户可以快速加载、转换、过滤、聚合和可视化数据。 Pandas与其他流行的Python库(如NumPy、Matplotlib和scikit-learn)快速集成。...df['column_name'].str.strip() # 将字符串转换为小写 df['column_name'] = df['column_name'].str.lower() # 将列转换为不同的数据类型...中的统计 Pandas提供了广泛的统计函数和方法来分析DataFrame或Series中的数据。

    50010

    一文带你看懂Python数据分析利器——Pandas的前世今生

    同时Pandas还可以使用复杂的自定义函数处理数据,并与numpy、matplotlib、sklearn、pyspark、sklearn等众多科学计算库交互。...数据类型 Pandas的基本数据类型是dataframe和series两种,也就是行和列的形式,dataframe是多行多列,series是单列多行。...读取数据 pandas支持读取和输出多种数据类型,包括但不限于csv、txt、xlsx、json、html、sql、parquet、sas、spss、stata、hdf5 读取一般通过read_*函数实现...在pandas中选择数据子集非常简单,通过筛选行和列字段的值实现。 具体实现如下: 4....分组计算 在sql中会用到group by这个方法,用来对某个或多个列进行分组,计算其他列的统计值。 pandas也有这样的功能,而且和sql的用法类似。 image 7.

    98230
    领券