重塑 DataFrame 是数据科学中一项重要且必不可少的技能。在本文中,我们将探讨 Pandas Melt() 以及如何使用它进行数据处理。...df_wide.melt( id_vars='Country', ) 现在行数为 15,因为 Country 列中的每个值都有 5 个值(3 X 5 = 15)。...melt 我们也可以直接从 Pandas 模块而不是从 DataFrame 调用melt()。...这是confirmed_df_long的例子 最后,我们使用merge()将3个DataFrame一个接一个合并: full_table = confirmed_df_long.merge( right...Pandas 的melt() 方法将 DataFrame 从宽格式重塑为长格式。
今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构——DataFrame。...对于excel、csv、json等这种结构化的数据,pandas提供了专门的api,我们找到对应的api进行使用即可: ?...常用操作 下面介绍一些pandas的常用操作,这些操作是我在没有系统学习pandas的使用方法之前就已经了解的。了解的原因也很简单,因为它们太常用了,可以说是必知必会的常识性内容。...我们要修改某一列也非常简单,也是通过赋值一样的方法覆盖原数据即可。...转成numpy数组 有时候我们使用pandas不方便,想要获取它对应的原始数据,可以直接使用.values获取DataFrame对应的numpy数组: ?
api参考: fillna: 使用指定的方法填充 NA/NaN 值。...>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],...limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 5、使用...DataFrame 填充时,替换沿相同的列名和相同的索引发生 >>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE")) >>> df.fillna
像我们目前只读取了一个Excel表中的一个sheet的数据,这个sheet的数据通常我们在pandas中称其为DataFrame,它可以包含一组有序的列(Series), 而每个Series可以有不同的数据类型...,这个等我们后面再详细说,今天和一起针对DataFrame一起做几个小练习。...DataFrame后面我们简称为df。...修改前的代码import pandas as pddf = pd.read_excel(".....period_range这个方法,并指定了开始和结束的月份,同时指定了使用月份。
问题描述: 创建一个包含10行6列随机数的DataFrame,行标签从大写字母A开始,列标签从小写字母u开始。
当我尝试使用pandas.read_csv打开文件时,出现此错误消息 message : UnicodeDecodeError: ‘utf-8’ codec can’t decode byte 0xa1...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...– python 我觉得有比这更好的方法:import pandas as pd df = pd.DataFrame( [[‘A’, ‘X’, 3], [‘A’, ‘X’, 5], [‘A’, ‘Y’...为了彼此分离请求,我为每个请求创建了一个随机数,并将其用作记录器的名称logger = logging.getLogger(random_number) 日志变成[111] started [222]...我正在开发一个使用数据库存储联系人的小型应用程序。
这篇文章中使用的数据集是一个足球球员各项技能及其身价的csv表,包含了60多个字段。数据集下载链接:数据集 1、DataFrame.info() 这个函数可以输出读入表格的一些具体信息。...(data.info()) pandas.core.frame.DataFrame'> RangeIndex: 10441 entries, 0 to 10440 Data columns...72 155 543 72 163 188 71 Name: potential, dtype: int64 值得注意的是,在分组函数后面使用一个...() 这个函数一般在groupby函数之后使用。...).head() print(result) 0 96 1 84 2 99 3 88 4 80 Name: birth_date, dtype: object 当然如果使用
Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) ---- 目录 Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) 前言...环境 基础函数的使用 DataFrame记录每个值出现的次数 重复值的数量 重复值 打印重复的值 总结 ---- 前言 这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片...Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习,期望能节约大家的事件从而更好的将精力放到真正去实现某种功能上去。...本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- DataFrame
Pandas数据处理2、DataFrame的drop函数具体参数使用详情 ---- 目录 Pandas数据处理2、DataFrame的drop函数具体参数使用详情 前言 环境 基础函数的使用 drop...Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习,期望能节约大家的事件从而更好的将精力放到真正去实现某种功能上去。...本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- drop...编码测试 这里先创建一个测试数据 import pandas as pd import numpy as np df = pd.DataFrame( {'name': ['张丽华', '李诗诗
pandas升级版!...那么对于大型数据集,是否有一个工具,既可以像 pandas 一样便捷操作 Dataframe,又有极高的效率,同时也没有 spark 那样复杂的用法和硬件环境要求呢?有!大家可以试试 Vaex。...Dataframe 是基本一致的。...Vaex非常强大,它可以指示每个步骤需要多长时间以及整个管道完成之前还剩下多少时间,在处理巨型文件时,进度条非常有用。...一般准则是,对于不改变原始 DataFrame 基本性质的操作,这些操作是惰性计算的。
Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?
前言 使用Pandas dataframe执行数千甚至数百万次计算仍然是一项挑战。你不能简单的将数据丢进去,编写Python for循环,然后希望在合理的时间内处理数据。...Pandas是为一次性处理整个行或列的矢量化操作而设计的,循环遍历每个单元格、行或列并不是它的设计用途。所以,在使用Pandas时,你应该考虑高度可并行化的矩阵运算。...在上面的代码中,我们创建了一个基本函数,它使用If-Else语句根据花瓣的长度选择花的类。我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。...Pandas的 .iterrows() 函数在内部实现了一个生成器函数,该函数将在每次迭代中生成一行Dataframe。...使用for循环,在内存中创建了大量的内存huge列表,并不是每个人都有无限的RAM来存储这样的东西!
Pandas数据处理——渐进式学习 ---- 目录 Pandas数据处理——渐进式学习 前言 DataFrame函数 DataFrame构造函数 DataFrame属性和数据 DataFrame类型转换...Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习,期望能节约大家的事件从而更好的将精力放到真正去实现某种功能上去。...本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。...#整型定位,使用数字 DataFrame.insert(loc, column, value) #在特殊地点loc[数字]插入column[列名]某列数据 DataFrame.iter...,故而我们一定要讲DataFrame活学活用,当然也离不开Numpy的使用。
今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...调用某两行两列交汇的数据 #索引号从0开始算,若为连续的行数,则算头不算尾 #以下行代码所选取的数据相同 #1:3、[1,2]表示行索引号,选取第二行和第三行 #3:5、[3,4]表示列索引号,选取第四列和第五列 DataFrame.iloc...[1:3,3:5] DataFrame.iloc[[1,2],[3,4]]
一、前言 前几天在J哥的Python群【Z】问了一个Pandas数据处理的问题,一起来看看吧。 各位群友,打扰了。能否咨询个pandas的处理问题?...我想做个处理,返回每个个体/记录中属性为1的列标签集合。例如:AUS就是[DEV_f1,URB_f0,LIT_f1,IND_f1,STB_f0],不知您有什么好的办法?...二、实现过程 这里【Jin】大佬给了一个答案,使用迭代的方法进行,如下图所示: 如此顺利地解决了粉丝的问题。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...站不住就准备加仓,这个pandas语句该咋写?
for 循环遍历每一行/列 使用 for 循环可以遍历 DataFrame 中的每一行或每一列。需要使用 iterrows() 方法遍历每一行,或者使用 iteritems() 方法遍历每一列。...它的基本使用方法如下: import pandas as pd df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) for index, row in df.iterrows...它返回一个迭代器,其中每个元素都是一个元组,元组中包含列标签和对应列的 Pandas Series。...返回的每个命名元组都代表 DataFrame 中的一行。这种方法比 iterrows() 更快。...DataFrame,应该尽量避免使用循环遍历,而是使用 Pandas 内置的方法,如 apply() 和 applymap() 等。
例如,在环境科学中,时间序列分析有助于分析一个地区的土地覆盖/土地利用随时间的变化及其潜在驱动因素。...在下一节中,我将提取这些值并将它们转换为pandas数据框。 从光栅文件中提取数据 现在进入关键步骤——提取每个366个光栅图像的像素值。...这个过程很简单:我们将循环遍历每个图像,读取像素值并将它们存储在一个列表中。 我们将另外在另一个列表中跟踪日期信息。我们从哪里获取日期信息?...如果你仔细查看文件名,你会注意到它们是按照每个相应的日期命名的。...转换为时间序列数据框 在pandas中,将列表转换为数据框格式是一项简单的任务: # convert lists to a dataframe df = pd.DataFrame(zip(date, rainfall_mm
pandas整个系列覆盖以下内容: 图解Pandas核心操作函数大全 图解Pandas数据变换高级函数 Pandas数据分组与操作 本篇为『图解Pandas数据变换高级函数』。...for循环(效率很低),我们会使用Series.map()来完成,通过简单的一行代码即可完成变换处理。...这个操作需要对每个样本(行)进行计算,我们使用apply并指定axis=1来完成,代码和图解如下: def BMI(series): weight = series["weight"]...对每个Series执行结果后,会将结果整合在一起返回(若想有返回值,定义函数时需要return相应的值) 当然,DataFrame的apply和Series的apply一样,也能接收更复杂的函数,如传入参数等...3.2 applymap方法 applymap是另一个DataFrame中可能会用到的方法,它会对DataFrame中的每个单元格执行指定函数的操作,如下例所示: df = pd.DataFrame(
object at 0x7fc04f3b9cd0> """ 以上代码来自pandas的doc文档 在上面的代码块中,当使用每月“M”频率的Grouper方法时,请注意结果dataframe是如何为给定的数据范围生成每月行的...例如,使用plotly_express(px),可以传递整个DataFrames作为参数;但是,使用graph_objects(go)时,输入会更改,并且可能需要使用字典和Pandas系列而不是DataFrames...例如,使用graph_objects,我可以生成混合子图,并且重要的是,可以覆盖多种类型的数据(例如时间序列)。...因此,我们可以将它们作为图形对象在循环中绘制出来。 注意,我们使用Graph Objects将两类数据绘制到一个图中,但使用Plotly Express为每个类别的趋势生成数据点。...在对数据分组之后,使用Graph Objects库在每个循环中生成数据并为回归线绘制数据。 结果是一个交互式图表,显示了每一类数据随时间变化的计数和趋势线。
这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。...在黄佬的邀请下,一位经过我多次辅导的群友率先使用了循环法解题: ? 我觉得非常棒,但我也希望看到有人再用变形法实现一次。林胖和一位群友再次给出了简化版本的循环解法: ?...当然,我们还可以将整个for循环改写成列表生成式: result = [(k, v) for k, vs in mydict.items() for v in vs] pd.DataFrame(result...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。
领取专属 10元无门槛券
手把手带您无忧上云