首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas | DataFrame基础运算以及空值填充

今天是pandas数据处理专题的第四篇文章,我们一起来聊聊DataFrame的基本运算。...也就是说对于对于只在一个DataFrame中缺失的位置会被替换成我们指定的值,如果在两个DataFrame都缺失,那么依然还会是Nan。 ?...当然是不现实的,pandas当中还为我们提供了专门解决空值的api。 空值api 在填充空值之前,我们首先要做的是发现空值。...fillna这个函数不仅可以使用在DataFrame上,也可以使用在Series上,所以我们可以针对DataFrame中的某一列或者是某些列进行填充: ?...在实际的运用当中,我们一般很少会直接对两个DataFrame进行加减运算,但是DataFrame中出现空值是家常便饭的事情。因此对于空值的填充和处理非常重要,可以说是学习中的重点,大家千万注意。

4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的缺失值处理

    在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...# 默认为0,表示去除包含 了NaN的行 # axis=1,表示去除包含了NaN的列 >>> df = pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan,...Columns: [] Index: [0, 1, 2] pandas中的大部分运算函数在处理时,都会自动忽略缺失值,这种设计大大提高了我们的编码效率。

    2.6K10

    Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量)

    Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) ---- 目录 Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) 前言...环境 基础函数的使用 DataFrame记录每个值出现的次数 重复值的数量 重复值 打印重复的值 总结 ---- 前言         这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片...,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- DataFrame...重复值的数量 import pandas as pd import numpy as np df = pd.DataFrame( {'name': ['张丽华', '李诗诗', '王语嫣

    2.4K30

    Pandas数据处理1、DataFrame删除NaN空值(dropna各种属性值控制超全)

    Pandas数据处理——渐进式学习 ---- 目录 Pandas数据处理——渐进式学习 前言 环境 DataFrame删除NaN空值 dropna函数参数 测试数据 删除所有有空的行 axis属性值...,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦...版本:1.4.4 ---- DataFrame删除NaN空值 在数据操作的时候我们经常会见到NaN空值的情况,很耽误我们的数据清理,那我们使用dropna函数删除DataFrame中的空值。...需要提供列名数组 inplace:值是True和False,True是在原DataFrame上修改,False则创建新副本 测试数据 import pandas as pd import numpy...如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断) downcast:dict, default is None,字典中的项为,为类型向下转换规则。

    4.1K20

    Pandas中替换值的简单方法

    使用内置的 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据中清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤的一部分。...为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。 在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。...当您想替换列中的每个值或只想编辑值的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。

    5.5K30

    (六)Python:Pandas中的DataFrame

    目录 基本特征 创建 自动生成行索引 自定义生成行索引 使用 索引与值 基本操作 统计功能  ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index...DataFrame也能自动生成行索引,索引从0开始,代码如下所示: import pandas as pd data = {'name': ['aaaaaa', 'bbbbbb', 'cccccc']...                我们可以通过一些基本方法来查看DataFrame的行索引、列索引和值,代码如下所示: import pandas as pd import numpy as np data...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    一日一技:pandas获取groupby分组里最大值所在的行

    如下面这个DataFrame,按照Mt分组,取出Count最大的那行 import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e...方法2:用transform获取原dataframe的index,然后过滤出需要的行 print df.groupby(['Mt'])['Count'].agg(max) idx=df.groupby...4 True 5 True dtype: bool CountMtSpValue03s1a1310s2d4410s2e556s3f6 上面的方法都有个问题是3、4行的值都是最大值...('Mt', as_index=False).first() MtCountSpValue0s13a11s210d42s36f6 那问题又来了,如果不是要取出最大值所在的行,比如要中间值所在的那行呢...思路还是类似,可能具体写法上要做一些修改,比如方法1和2要修改max算法,方法3要自己实现一个返回index的方法。不管怎样,groupby之后,每个分组都是一个dataframe。

    4.2K30

    根据规则过滤掉数组中的重复数据

    今天有一个需求,有一些学生成绩的数据,里面包含一些重复信息,需要从数组对象中过滤掉重复的数据。 例如,有一个包含学生成绩的数组,其中每个学生的成绩可能出现多次。...我们需要从这个数组中过滤掉重复的成绩,只保留每个学生最高的分数。 可以使用 Array.prototype.filter() 方法来过滤掉数组中的重复数据。...该方法接受一个回调函数作为参数,判断数组中的每个元素是否满足某个条件。如果回调函数返回 true,则该元素将被保留在新的数组中。否则,该元素将被过滤掉。...我们还可以使用 Array.prototype.filter() 方法来根据更复杂的规则过滤掉数组中的重复数据。 例如,我们可以根据对象的某个属性来过滤掉重复的数据。...未经允许不得转载:Web前端开发资源网 » 根据规则过滤掉数组中的重复数据

    17210

    pandas中的数据处理利器-groupby

    在数据分析中,常常有这样的场景,需要对不同类别的数据,分别进行处理,然后再将处理之后的内容合并,作为结果输出。对于这样的场景,就需要借助灵活的groupby功能来处理。...上述例子在python中的实现过程如下 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'x':['a','a...groupby函数的返回值为为DataFrameGroupBy对象,有以下几个基本属性和方法 >>> grouped = df.groupby('x') >>> grouped pandas.core.groupby.generic.DataFrameGroupBy...中的groupby实际上非常的灵活且强大,具体的操作技巧有以下几种 1....()) y 0 0 1 2 2 -2 3 3 4 3 5 8 pandas中的groupby功能非常的灵活强大,可以极大提高数据处理的效率。

    3.6K10

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    python dataframe筛选列表的值转为list【常用】

    筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...当b列中为’1’时,所有c的值,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] # 筛选列表中...,当a列中为'one',b列为'1'时,所有c的值,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist() print...(a_b_c) # out: ['一', '一'] # 将a列整列的值,转为list(两种) a_list_1 = df.a.tolist() a_list_2 = df['a'].tolist(

    5.1K10
    领券