样例数据 df = pd.DataFrame({‘X’: [1, 2, 7, 5, 10], ‘Y’: [4, 3, 8, 2, 9]}) df[‘X’] [[]] df[[‘X’]] 相信通过观察它们的输出结果,你一定可以会猜测他们的数据类型不同的。 df[‘X’]更像是pd.series类型的,而df[[“X”]]是pd.Dateframe类型,事实也的确如此。 type(df[‘X’]) type(df[[‘X’]]) 除此之外,df[[‘X’,‘Y’]]这样的写法也是被支持的,而df[‘X’,‘Y’]则不被允许。 df[[‘X’,‘Y’]]
Python的科学计算及可视化 今天讲讲pandas模块 从Dataframe获取特定的行或者列数据,生成一个列表 Part 1:目标 ? 已知一个Df,如下图 包括3列["time", "pos", "value1"] 包括8行[0,1,2,3,4,5,6,7] 输出 获取["time", "pos", "value1"]任意一列数据,输出为列表 获取第0行数据 Df ? _1["time"].tolist() print("time-列:", list4) print("time-列,数据类型:", type(list4)) print("\n获取行信息") df_2 "].tolist(),格式:df[列名].tolist() 输出行,本文中其实还是采用输出列的方式,即先将原来的df_1转置再输出列信息,df_2 = df_1.T
领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折
这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据 结构传入给自己实现的函数中,我们在函数中实现对Series不同属性之间的计算,返回一个结果 ,则apply函数 会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。 'oregon']) #columns表述列标, index表述行标 print(df) t1 = df.apply(f) #df.apply(function, axis=0),默认 (df['score_math'].apply(np.mean)) <class 'pandas.core.series.Series'> #逐行求每个学生的平均分 >>> df.apply(np.mean ,就是每一行或每一列返回一个值; 返回大小相同的DataFrame:如下面自定的lambda函数。
Python的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征 - 数据格式为一个列表 - 列表中每一个元素为一个字典,每个字典对应前端表格的一行 - 单个字典的键为前端表格的列名,字典的值为前端表格每列取的值 简单来说就是要将一个Df转换为一个列表,该列表有特定的格式 n按行输出") list_fields = df_1.to_dict(orient='records') print(list_fields) 代码截图 ? 表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢? 字典的键为列名,值为一个列表,该列表对应df的一个列 dict_fields = df_1.to_dict(orient='list') print(dict_fields) ? list对应结果 ?
Stack 堆叠采用任意大小的DataFrame,并将列“堆叠”为现有索引的子索引。因此,所得的DataFrame仅具有一列和两级索引。 ? 堆叠名为df的表就像df.stack()一样简单 。 Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。 堆叠中的参数是其级别。在列表索引中,索引为-1将返回最后一个元素。这与水平相同。级别-1表示将取消堆叠最后一个索引级别(最右边的一个)。 可以按照与堆叠相同的方式执行堆叠,但是要使用level参数: df.unstack(level = -1)。 Merge 合并两个DataFrame是在共享的“键”之间按列(水平)组合它们。 例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?
python中有的df列比较长head的时候会出现省略号,现在数据分析常用的就是基于anaconda的notebook和sypder,在spyder下head的时候就会比较明显的遇到显示不全。 这时候我们就需要用到pandas下的一个函数set_option 我们直接来看代码: 这是正常情况spyder下head()的样子 import numpy as np import pandas as pd df=pd.DataFrame(np.random.rand(2,10)) #创建一个2行10列的数 df.head() 很明显第4列到7列就省略掉了 Out[4]: 0 1 2 … 7 8 ',10) pd.set_option('display.max_rows',100)#设置最大可见100行 df=pd.DataFrame(np.random.rand(100,10)) df.head (100) 好啦,这里就不展示显示100行的结果了,set_option还有很多其他参数大家可以直接官网查看这里就不再啰嗦了 以上这篇解决Python spyder显示不全df列和行的问题就是小编分享给大家的全部内容了
因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法实现了类似pivot方法的功能 它可以在指定的列和行有重复的情况下使用 我们可以使用均值、中值或其他的聚合函数来计算重复条目中的单个值 对于不用的列使用通的统计方法 使用字典来实现 df_nodmp5.pivot_table(index="ad_network_name",values=["mt_income","impression" ], aggfunc={"mt_income":[np.sum],"impression":[np.sum]}) stack/unstack 事实上,变换一个表只是堆叠DataFrame的一种特殊情况 堆叠DataFrame意味着移动最里面的列索引成为最里面的行索引,反向操作称之为取消堆叠,意味着将最里面的行索引移动为最里面的列索引。 from pandas import DataFrame import pandas as pd import numpy as np # 建立多个行索引 row_idx_arr = list(zip
今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1. # 绘图引擎 import pandas_bokeh pandas_bokeh.output_notebook() df.plot.bar(backend='pandas_bokeh') # 绘图引擎 (figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大 () df.plot.hist(alpha=0.5) # alpha设置透明度 单直方图 # 单直方图 df.a.plot.hist() 堆叠并指定分箱数(默认为 10) # 堆叠并指定分箱数 默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False
今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1. # 绘图引擎 import pandas_bokeh pandas_bokeh.output_notebook() df.plot.bar(backend='pandas_bokeh') ? 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。 默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() ? 单个面积图 df.a.plot.area() ? 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) ?
现在只要一行代码,即可完成柱状图的绘制df.plot.bar() ? 同样是这个图,如果使用Matplotlib制作的话? 可以看到,虽然结果差不多,不过代码量瞬间就上去了,如果你是Matplotlib高手可能会用更简洁的代码制作,但一定没有pandas一行代码来的方便! 更多图表,一览Pandas强大 下面我们继续看看,一行pandas代码能做出哪些常用的图! 堆叠柱状图,添加一个参数即可df.plot.barh(stacked=True) ? 堆叠面积图df.plot.area(stacked=True,alpha = 0.9) ? 密度估计图df.plot.kde() ? /不堆叠的直方图 df.plot.hist(stacked=True, bins=20) df.plot.hist(alpha=0.5) ?
的行。 对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。 最佳解决方案 要以 Pandas 的方式迭代遍历DataFrame的行,可以使用: DataFrame.iterrows() for index, row in df.iterrows(): 0.19.1): iterrows:数据的dtype可能不是按行匹配的,因为iterrows返回一个系列的每一行,它不会保留行的dtypes(dtypes跨DataFrames列保留)* iterrows 对于大量的列(> 255),返回常规元组。 第二种方案: apply 您也可以使用df.apply()遍历行并访问函数的多个列。
Pandas 的 plot() 方法 Pandas 附带了一些绘图功能,底层都是基于 Matplotlib 库的,也就是说,由 Pandas 库创建的任何绘图都是 Matplotlib 对象。 从技术上讲,Pandas 的 plot() 方法通过 kind 关键字参数提供了一组绘图样式,以此来创建美观的绘图。kind 参数的默认值是行字符串值。 事实上,Pandas 通过为我们自动化大部分数据可视化过程,使绘图变得像编写一行代码一样简单。 导入库和数据集 在今天的文章中,我们将研究 Facebook、微软和苹果股票的每周收盘价。 也可以堆叠直方图: df[['MSFT', 'FB']].plot(kind='hist', bins=25, alpha=0.6, stacked=True, figsize=(9,6)) Output ,通过将 False 分配给堆叠参数来取消堆叠面积图是一项常见任务: df.plot(kind='area', stacked=False, figsize=(9,6)) Output: 饼图 如果我们对比率感兴趣
导读 pandas中最常用的数据结构是DataFrame,而DataFrame相较于嵌套list或者二维numpy数组更好用的原因之一在于其提供了行索引和列名。 惯例开局一张图 01 索引简介与样例数据 Series和DataFrame是pandas中的主要数据结构类型(老版本中曾有三维数据结构Panel,是DataFrame的容器,后被取消),而二者相较于传统的数组或 对于前面介绍的示例数据df,以重组行索引为例,两种可选方式为: ? 注意到原df中行索引为[1, 3, 5],而新重组的目标索引为[1, 2, 3],其中[1, 3]为已有索引直接提取,[2, 4]在原df中不存在,所以填充空值;同时,原df中索引[5]由于不在指定索引中 05 stack与unstack 这也是一对互逆的操作,其中stack原义表示堆叠,实现将所有列标签堆叠到行索引中;unstack即解堆,用于将复合行索引中的一个维度索引平铺到列标签中。
今天没有学员提问 只有同事点名 怎么一键取消隐藏的行和列 假设一个表是这样的 我们看到不连续的字母和数字 就知道它有隐藏行列了 如何快速取消隐藏呢 直接上GIF 第一步 点击A和1的交界处全选 第二步 点击开始->格式->隐藏和取消隐藏->取消隐藏行/列 还有一种比较高端的方法 写VBA Sub showAll() Cells.Rows.Hidden = 0 Cells.Columns.Hidden
大家好,又见面了,我是你们的朋友全栈君。 pandas删除空数据行及列dropna() import pandas as pd # 删除含有空数据的全部行 df4 = pd.read_csv('4.csv', encoding='utf -8') df4 = df4.dropna() # 可以通过axis参数来删除含有空数据的全部列 df4 = df4.dropna(axis=1) # 可以通过subset参数来删除在age和sex 中含有空数据的全部行 df4 = df4.dropna(subset=["age", "sex"]) print(df4) df4 = df4.dropna(subset=['age', 'body 如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
Pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。 pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使python成为强大而高效的数据分析环境的重要因素之一。 # 垂直(行)堆叠阵列 >>> np.hstack((e,f)) # 水平(列)堆叠阵列 array([[ 7., 7., 1., 0.], [ 7., 7., 0., 1.]] Pandas Pandas库建立在NumPy上,并为Python编程语言提供了易于使用的数据结构和数据分析工具。 Stack: 将数据的列索引转换为行索引(列索引可以简单理解为列名) Unstack: 将数据的行索引转换为列索引 >>> stacked = df5.stack() >>> stacked.unstack
环境准备 我们用到的是pandas-bokeh,它为Pandas、GeoPandas和Pyspark 的DataFrames提供了Bokeh绘图后端,类似于Pandas已经存在的可视化功能。 yticks=[0, 100, 200, 300, 400], # y轴刻度值 ylim=(0, 400), # y轴区间 toolbar_location=None, # 工具栏(取消 柱状图(条形图) 柱状图没有特殊的关键字参数,一般分为柱状图和堆叠柱状图,默认是柱状图。 , # 堆叠柱状图 alpha=0.6) 默认情况下,x轴的值就是数据索引列的值,我们也可通过指定参数x来设置x轴;另外,我们还可以通过关键字kind="barh"或访问器plot_bokeh.barh 面积图 面积图嘛,提供两种:堆叠或者在彼此之上绘制 stacked:如果为 True,则面积图堆叠;如果为 False,则在彼此之上绘制图。
import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame # 图像堆叠 df.plot(kind='bar', stacked=True) <matplotlib.axes._subplots.AxesSubplot at 0x119585cd0> ? : 5, dtype: int64 type(a) pandas.core.series.Series # 某一行取值 df.iloc[5].plot() <matplotlib.axes. # 取所有的行 for i in df.index: df.iloc[i].plot(label = str(i)) plt.legend() <matplotlib.legend.Legend # 更简单的取所有行操作 转置 df.T.plot() ? <matplotlib.axes.
参考链接: 在Pandas DataFrame中处理行和列 在print时候,df总是因为数据量过多而显示不完整。 解决方法如下: #显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_option('display.max_rows', None ) #设置value的显示长度为100,默认为50 pd.set_option('max_colwidth',100) 可以参看官网上的资料,自行选择需要修改的参数: https://pandas.pydata.org /pandas-docs/stable/reference/api/pandas.set_option.html
腾讯GPU 云服务器是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。
扫码关注腾讯云开发者
领取腾讯云代金券