pandas数据清洗-删除没有序号的所有行的数据 问题:我的数据如下,要求:我想要的是:有序号的行留下,没有序号的行都不要 图片 【代码及解析】 import pandas as pd filepath...,默认0,即取第一行 skiprows:省略指定行数的数据 skip_footer:省略从尾部数的行数据 **继续** lst=[] for index,row in df.iterrows():...=int: lst.append(index) lst 定义一个空列表,用于存储第一列中数据类型不是int的的行号 方法:iterrows() 是在数据框中的行进行迭代的一个生成器,...它返回每行的索引及一个包含行本身的对象。...所以,当我们在需要遍历行数据的时候,就可以使用 iterrows()方法实现了。 df1=df.drop(labels=lst) 删除l列表lst存储的所有行号 【效果图】: 完成
从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。...axis: axis参数默认为0('index'),按行删除,即删除有空值的行。将axis参数修改为1或‘columns’,则按列删除,即删除有空值的列。...subset: 删除空值时,只判断subset指定的列(或行)的子集,其他列(或行)中的空值忽略,不处理。当按行进行删除时,subset设置成列的子集,反之。...假如空值在第一行或第一列,以及空值前面的值全都是空值,则无法获取到可用的填充值,填充后依然保持空值。...limit: 表示填充执行的次数。如果是按行填充,则填充一行表示执行一次,按列同理。 在缺失值填充时,填充值是自定义的,对于数值型数据,最常用的两种填充值是用该列的均值和众数。
DataFrame的一列就是Series,Series可以转化为DataFrame,调用方法函数to_frame()即可 Series 是 pandas 中的一种数据结构,可以看作是带有标签的一维数组。...值(Values): 值是 Series 中存储的实际数据,可以是任何数据类型,如整数、浮点数、字符串等。...定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值; backfill / bfill表示用后面行/列的值,填充当前行/列的空值。axis:轴。...0或’index’,表示按行删除;1或’columns’,表示按列删除。inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。...'B': [5, 4, 3, 2, 1]})# 查找列'A'中大于3的所有行,并将结果转换为64位整数result = (df['A'] > 3).astype('int64')print(result
Pandas中都实现了对应的算术运算函数,如add()、sub()、mul()、div()等,常用的算术运算函数见下表。...两个DataFrame相加,如果DataFrame的形状和索引不完全一样,只会将两个DataFrame中行索引和列索引对应的数据相加,生成一个形状能兼容两个DataFrame的新DataFrame,在没有运算结果的位置填充空值...两个Series相加,如果形状和索引不完全一样,只会将行索引对应的数据相加,生成一个形状能兼容两个Series的新Series,在没有运算结果的位置填充空值(NaN)。 ?...Series的行索引与DataFrame的列索引相同 ?...Series的行索引与DataFrame的行索引或列索引不完全相同 ?
如果重复的那些行是每一列懂相同的,删除多余的行只保留相同行中的一行就可以了,这个在Excel或pandas中都有很容易使用的工具了,例如Excel中就是在菜单栏选择数据->删除重复值,然后选择根据哪些列进行去重就好...特定条件例如不是保留第一条也不是最后一条,而是根据两列存在的某种关系、或者保留其中最大的值、或保留评价列文字最多的行等。...更深入一些,如果没有某一列可以作为主键呢?存在一个表,除name之外,其他的列都相同算重复行,这些列有文本有数值型,但是不能拿其中任何列作主键,实现上面的去重合并name,怎么办?...指定根据哪些列去重,默认是根据所有列,也就是当两行的所有列都一样时满足去重条件; keep有三种选择:{‘first’, ‘last’, False},first和last分别对应选重复行中的第一行、最后一行...,false是删除所有的重复值,例如上面例子中的df根据name去重且keep填false的话,就只剩name等于d的行了; inplace是指是否应用于原表,通常建议选择默认的参数False,然后写newdf
创建NaN n = np.nan # 类型 type(n) float # 任何数字和nan做计算永远是nan m = 1 m + n nan NaN in Series # 创建含nan情况 s1 =...True False True 2 True True True True False 3 True True True True True 4 True True True True True # 删除的使用...(df二维的,因此略有不同) # axis=0所有带nan的行全部删除 df2 = df1.dropna(axis=0) df2 0 1 2 3 4 0 0.912220 0.932765 0.827517...0.543484 0.555226 0.138279 0.979043 0.460136 4 0.870316 0.141909 0.567168 0.116696 0.204007 # axis=1所有带nan的列全部删除...(当前行或列的nan>2,则删除) df3 = df2.dropna(thresh=2) df3 0 1 2 3 4 0 0.371901 0.140453 0.576335 0.895684 0.233522
apply方法是对DataFram中的每一行或者每一列进行映射。 ?...image.png 5.6 pandas的聚合函数 聚合函数包括:求和,最大值,最小值,计数、均值、方差、分位数 这些聚合函数都是基于没有缺失数据的情况。 ?...image.png 5.8 缺失值处理 缺失值数据在大部分数据分析应用中都很常见,pandas的设计目标之一就是让缺失数据的处理任务尽量轻松。 pandas对象上的所有描述统计都排除了缺失数据。...这个方法有2个参数: 关键字参数how,可以填入的值为any或all,any表示只要有1个空值则删除该行或该列,all表示要一行全为空值则删除该行。...Pandas中的时间序列 不管在哪个领域中(如金融学、经济学、生态学、神经科学、物理学等),时间序列数据都是一种重要的结构化数据形式。在多个时间点观察或者测量到的任何事物都是可以形成一段时间序列。
删除的方式无非有两种,一是删除缺失值所在行,也就是含有缺失值的样本;二就是删除缺失值所在列,也就是含有缺失值的特征,下面以后者为例。 首先需要确定的是删除的标准是什么?...2、pandas填充 pandas中的fillna()应该是最常用的一种填充缺失值方法,可以指定填充指定列或者整个数据集。...中的值作为填充值。...SimpleImputer优于fillna()之处在于前者可以一行语句指定填充值的形式,而利用fillna()需要多行重复语句才能实现,或者需要提前计算某列的平均值、中位数或者众数。...当预测一个特征时,其余特征的缺失值都需要用0暂时填补,每当预测完一列特征,就用预测出的结果代替原数据集对应的特征,然后预测下一特征,直至最后一个含有缺失值的特征,此时特征矩阵中应该没有需要利用0填补的缺失值了
比如,一元运算不修改行索引和列索引;而对于二元操作,Pandas会自动对齐行索引。...索引不变的通用函数 由于Pandas是基于Numpy搭建的,所以任何Numpy的通用函数都适用于Pandas Series对象和DataFrame对象。...population.index # Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object') 如果某个DataFrame没有对应的键值...image.png 同时操作DataFrame和Series的通用函数。 当同时操作DataFrame和Series对象时,行和列索引保持对齐。...image.png 上述操作是行级别的,如果需要列级别的操作,需要指定aixs: df.subtract(df['R'], axis=0) ? image.png
NaN)) print(pd.isnull(nan)) 结果: True True 缺失数据的产生:数据录入的时候, 就没有传进来 在数据传输过程中, 出现了异常, 导致缺失 ..., 默认是判断缺失值的时候会考虑所有列, 传入了subset只会考虑subset中传入的列 how any 只要有缺失就删除 all 只有整行/整列数据所有的都是缺失值才会删除 inplace 是否在原始数据中删除缺失值...函数 apply函数可以接收一个自定义函数, 可以将DataFrame的行/列数据传递给自定义函数处理 apply函数类似于编写一个for循环, 遍历行/列的每一个元素,但比使用for循环效率高很多 ..., 直接应用到整个DataFrame中: 使用apply的时候,可以通过axis参数指定按行/ 按列 传入数据 axis = 0 (默认) 按列处理 axis = 1 按行处理,上面是按列都执行了函数.../3 df.apply(avg_3_apply) 按一列一列执行结果:(一共两列,所以显示两行结果) 创建一个新的列'new_column',其值为'column1'中每个元素的两倍,当原来的元素大于
概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源...产生这个问题可能的原因 从来没有填正确过 数据不可用 计算错误 无论什么原因,只要有空白值得存在,就会引起后续的数据分析的错误。...data.duration = data.duration.fillna(data.duration.mean()) 删除不完整的行 假设我们想删除任何有缺失值得行。...删除任何包含 NA 值的行是很容的: data.dropna() 当然,我们也可以删除一整行的值都为 NA: data.dropna(how='all') 我们也可以增加一些限制,在一行中有多少非空值的数据是可以保留下来的...删除一正列为 NA 的列: data.drop(axis=1, how='all') 删除任何包含空值的列: data.drop(axis=1. how='any') 这里也可以使用像上面一样的 threshold
pandas 入门概念 series 和 dataframe 这是pandas 中最为基本的两个概念,series 类似于一维数组,可以近似当成普通的数组进行操作,对于series 默认会有行索引为它索引...,否则按列连接 # 删除一列,在原有的dataframe上进行操作 del df['日期'] 或是使用 pop 方法,返回被删除的数据列(只能是某一列) df.pop('cx') # 通过 drop...方法,可以指定删除多列 df.drop(['a', 'b'], axis=0,1) # axis 指定按行执行或是按列执行 # 删除行 也可以通过drop 操作 df.drop(['a', 'b'])...2).参与运算的如果是两个DataFrame,有可能所有的行、列是一致的,那么运算时对应行列的位置进行相应的算术运算,若行列没有对齐,那么填值NaN。 3)....新的series保留原serie的values值,如果新的index和原series的index不同,则不同的填充NaN值,或者使用fill_value参数指定填充值。
Pandas 包含一些有用的调整,但是:对于一元操作,如取负和三角函数,这些ufunc将保留输出中的索引和列标签,对于二元操作,如加法和乘法,将对象传递给ufunc时,Pandas 将自动对齐索引。...', 'Texas'], dtype='object') 任何没有条目的项目都标为NaN(非数字),这就是 Pandas 标记缺失数据的方式(请在“处理缺失数据”中参阅缺失数据的进一步讨论)。...,则可以使用适当的对象方法代替运算符来修改填充值。...例如,调用A.add(B)相当于调用A + B,但对于A或``B`中的任何可能会缺失的元素,可以显式指定的填充值: A.add(B, fill_value=0) ''' 0 2.0 1 5.0...(参见“数据计算:广播”),二维数组与其中一行之间的减法是逐行应用的。
任何事情都是由量变到质变的过程,学习Python也不例外。 只有把一个语言中的常用函数了如指掌了,才能在处理问题的过程中得心应手,快速地找到最优方案。...一、pivot_table函数定义 pivot_table函数是pandas库中的函数,调用首先需要加载pandas库。 其功能相当于excel中的数据透视表。...values:要聚合的列,默认对所有数值型变量聚合。 index:设置透视表中的行索引名。 columns:设置透视表中的列索引名。...fill_value:缺失值填充值,默认为NaN,即不对缺失值做处理。注意这里的缺失值是指透视后结果中可能存在的缺失值,而非透视前原表中的缺失值。...dropna:是否删除汇总结果中全为NaN的行或列,默认为True。
1.资料筛选 #存储元素与切割 import pandas as pd df = pd.DataFrame(info) df.ix[1] # 查看特定的列 df[['name', 'age']] # 查看特定列的特定内容...':'F', 'name':'qoo'}]), ignore_index=True) # 删除第六列 df = df.drop(6) 设定新的索引 # 新增的栏位 df['userid'] = range...如果字段数据成线性规律 1.舍弃缺失值 舍弃含有任意缺失值的行 df.dropna() 舍弃所有字段都含有缺失值的行 df.dropna(how='all') 舍弃超过两栏缺失值的行 df.dropna...使用0值表示沿着每一列或行标签\索引值向下执行方法 使用1值表示沿着每一行或者列标签模向执行对应的方法 下图代表在DataFrame当中axis为0和1时分别代表的含义(axis参数作用方向图示): 3...(method='pad') 向前填补缺失值 df.fillna(method='bfill', limit=2) pad/ffill:往后填值 bfill/backfill:往前填值 注意:这里的往前往后是指的从上往下
为了更好地掌握数据科学必备库Pandas的基本使用,本文通过精灵宝可梦的数据集实战,我们一起过一遍Pandas的基本操作,文中的代码都附有注释,并给出了结果的配图。 话不多说,我们开始吧!...() 显示行列信息 df.index # 列索引 df.columns # 行索引 df.values # array对象 df.dtypes # 列元素属性 删除行列 df.drop(...['#'],axis=1,inplace=True) # 删除‘#’列数据,在原DataFrame上改变 df.drop([1,2,3],axis=0) # 删除行索引为1、2、3的行,不在原DataFrame...Unknown df['Type2'].fillna(df['Type1'], inplace=True) # 将所有Type2空缺值填为其对应Type1的值 删除空值 df.dropna(how='any...] # 访问第4行数据,两行代码结果相同 数据访问方式(区域索引,先行后列) df.iloc[:5,:2] # 数据前5行前两列,按位置索引 df.loc[10:15,['Generation'
数据清洗是数据科学中很少提及的一点,因为它没有训练神经网络或图像识别那么重要,但是数据清洗却扮演着非常重要的角色。没有它,机器学习预测模型将不及我们预期那样有效和精准。...下面我将讨论这些不一致的数据: 数据缺失 列值统一处理 删除数据中不需要的字符串 数据缺失 数据缺失原因? 在填写问卷时,人们往往未填全所有必填信息,或用错数据类型。...删除缺值项 如果你只是想简单地排除缺值项,可以用dropna函数配合axis参数进行。缺省情况下,axis=0表示沿横轴(行)删除含有有非数值型字段的任何行。...所以,这意味着4列超过90%的数据相当于“非数”。这些对我们的结果几乎没有影响。 执行上述操作的另一种方法是手动扫描/读取列,并删除对我们的结果影响不大的列。...请查看以下链接,以查找有助于您进行Python数据科学之旅的其他资源: Pandas文档 Numpy文档 Python数据科学简介。对于那些以前没有数据科学知识的初学者来说,这是一门很棒的课程。
关键字del用于删除列。...因此,对返回的Series所做的任何就地修改全都会反映到源DataFrame上。通过Series的copy方法即可指定复制列。...如果没有显式指定索引,则各Series的索引会被合并成结果的行索引 由字典组成的字典 各内层字典会成为一列。...Index会被完全使用,就像没有任何复制一样 method 插值(填充)方式 fill_value 在重新索引的过程中,需要引入缺失值时使用的替代值 limit 前向或后向填充时的最大填充量 tolerance...,其索引和列为原来那两个DataFrame的并集: print(df1 + df2) 如果DataFrame对象相加,没有共用的列或行标签,结果都会是空: import pandas as pd
__version__) # 打印 pandas 的版本 print(xlrd.__version__) # 打印 xlrd 的版本 如果没有报错,并且成功打印出版本号,说明安装成功。...DataFrame 是 pandas 中的核心数据结构之一,它是一个二维的表格,类似于 Excel 表格。每个 DataFrame 都有行索引和列标签。...8.2 处理缺失数据 缺失值 是指在数据集中某些字段没有数据,这是常见的问题。我们可以选择删除包含缺失值的行,或者用其他值来填补缺失值。...:\n", df_filled) # 删除包含缺失值的行 df_dropped = df.dropna() print("\n删除缺失值后的数据:\n", df_dropped) 详细解释 填充缺失值...删除包含缺失值的行: df.dropna():删除包含任何缺失值的行,返回一个新的 DataFrame。
领取专属 10元无门槛券
手把手带您无忧上云