首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

右上角表示数据帧中的最大行数。 在绘图的顶部,有一系列数字表示该列中非空值的总数。 在这个例子中,我们可以看到许多列(DTS、DCAL和RSHA)有大量的缺失值。...其他列(如WELL、DEPTH_MD和GR)是完整的,并且具有最大的值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好的工具。它为每一列提供颜色填充。...通过调用以下命令可以生成矩阵图: msno.matrix(df) 如结果图所示,DTS、DCAL和RSHA列显示了大量缺失数据。...接近0的值表示一列中的空值与另一列中的空值之间几乎没有关系。 有许多值显示为列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。

4.8K30

python数据科学系列:pandas入门详细教程

,但仍然主要是用于数值计算,尤其是内部集成了大量矩阵计算模块,例如基本的矩阵运算、线性代数、fft、生成随机数等,支持灵活的广播机制 pandas主要用于数据处理与分析,支持包括数据读写、数值计算、数据处理...各元素值是否为空的bool结果。...需注意对空值的界定:即None或numpy.nan才算空值,而空字符串、空列表等则不属于空值;类似地,notna和notnull则用于判断是否非空 填充空值,fillna,按一定策略对空值进行填充,如常数填充...、向前/向后填充等,也可通过inplace参数确定是否本地更改 删除空值,dropna,删除存在空值的整行或整列,可通过axis设置,也包括inplace参数 重复值 检测重复值,duplicated,...count、value_counts,前者既适用于series也适用于dataframe,用于按列统计个数,实现忽略空值后的计数;而value_counts则仅适用于series,执行分组统计,并默认按频数高低执行降序排列

15K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    dropna()和fillna()方法1.1.2.1 dropna()删除含有空值或缺失值的行或列1.1.2.2 fillna()方法可以实现填充空值或者缺失值    1.2 重复值的处理1.2.1...一般空值使用None表示,缺失值使用NaN表示  1.1.1 使用isnull()和notnull()函数  ​ 可以判断数据集中是否存在空值和缺失值  1.1.1.1 isnull()语法格式:  pandas...keep:删除重复项并保留第一次出现的项取值可以为 first、last或 False  ​ duplicated()方法用于标记 Pandas对象的数据是否重复,重复则标记为True,不重复则标记为False...dropna:表示是否将旋转后的缺失值删除,若设为True,则表示自动过滤缺失值,设置为 False则相反。 ...哑变量又称应拟变量,名义变量,从名称上看就知道,它是人为虚设的变量,用来反映某个交量的不间类别 ​ 使用哑变最处理类别转换,事实上就是将分类变量转换为哑变最矩阵或指标矩阵,矩阵的值通常用“0”或“1”表示

    5.5K00

    我用Python展示Excel中常用的20个操

    Pandas 在Pandas中可以结合NumPy生成由指定随机数(均匀分布、正态分布等)生成的矩阵,例如同样生成10*2的0—1均匀分布随机数矩阵为,使用一行代码即可:pd.DataFrame(np.random.rand...数据删除 说明:删除指定行/列/单元格 Excel 在Excel删除数据十分简单,找到需要删除的数据右键删除即可,比如删除刚刚生成的最后一列 ?...Pandas 在pandas中删除数据也很简单,比如删除最后一列使用del df['new_col']即可 ?...缺失值处理 说明:对缺失值(空值)按照指定要求处理 Excel 在Excel中可以按照查找—>定位条件—>空值来快速定位数据中的空值,接着可以自己定义缺失值的填充方式,比如将缺失值用上一个数据进行填充...数据去重 说明:对重复值按照指定要求处理 Excel 在Excel中可以通过点击数据—>删除重复值按钮并选择需要去重的列即可,例如对示例数据按照创建时间列进行去重,可以发现去掉了196 个重复值,保留了

    5.6K10

    python数据分析——Python数据分析模块

    Pandas是基于Numpy构建的数据分析库,但它比Numpy有更高级的数据结构和分析工具,如Series类型、DataFrame类型等。...调用DataFrame对象的info方法,可以获得其信息概述,包括行索引,列索引,非空数据个数和数据类型信息。...的值设置为1时,获得各行的平均值/中位数 info() 对所有数据进行简述 isnull() 检测空值,返回一个元素类型为布尔值的DataFrame,当出现空值时返回True,否则返回False dropna...() 删除数据集合中的空值 value_counts 查看某列各值出现次数 count() 对符合条件的统计次数 sort_values() 对数据进行排序,默认升序 sort_index() 对索引进行排序...目前,计算机建模人员则倾向于使用包含各种人工智能方法的程序库Scikit-Learn。

    26310

    Pandas知识点-缺失值处理

    Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull...而不管是空字符串还是空格,其数据类型都是字符串,Pandas判断的结果不是空值。 2. 自定义缺失值有很多不同的形式,如上面刚说的空字符串和空格(当然,一般不用这两个,因为看起来不够直观)。...将how参数修改为all,则只有一行(或列)数据中全部都是空值才会删除该行(或列)。 thresh: 表示删除空值的界限,传入一个整数。...如果一行(或列)数据中少于thresh个非空值(non-NA values),则删除。也就是说,一行(或列)数据中至少要有thresh个非空值,否则删除。...subset: 删除空值时,只判断subset指定的列(或行)的子集,其他列(或行)中的空值忽略,不处理。当按行进行删除时,subset设置成列的子集,反之。

    4.9K40

    Kaggle知识点:缺失值处理

    如果任何因变量缺失数据的概率不取决于自变量的值,则使用成列删除的回归估计值将会是无偏误的。 缺点: 标准误通常较大。 如果数据不是MCAR而只是MAR,那么成列删除可能会产生有偏误的估计值。...‘any’,表示该行/列只要有一个以上的空值,就删除该行/列;‘all’,表示该行/列全部都为空值,就删除该行/列。 thresh:非空元素最低数量。int型,默认为None。...如果该行/列中,非空元素数量小于这个值,就删除该行/列。 subset:子集。列表,元素为行或者列的索引。...如所有的空值都用“unknown”填充。一般作为临时填充或中间过程。有时可能导致严重的数据偏离,一般不推荐。...downcast:默认为 None,如果需要将填充的值向下转换为适当的相等数据类型的数值,如将 float64 数据类型转换为 int64 数据类型时,则此参数的值为 ‘infer’。

    2K20

    超级攻略!PandasNumPyMatrix用于金融数据准备

    表示时间窗的大小,注意有两种形式(int or offset)。如果使用int,则数值表示计算统计量的观测值的数量即向前几个数据。 如果是offset类型,表示时间窗的大小。..., optional 跨度,根据跨度指定衰减, , halflife float, str, timedelta, optional 半衰期,根据半衰期指定衰减, 如果times指定,则观察值衰减到其值一半的时间单位...删除列 # 删除数据 >>> new_df = df.drop(['Date'], axis=1) >>> new_df.head() ?...['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume', 'ewm'] # loc是DataFrame有索引标记的值的 >>>...Matrix 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合。由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。

    7.3K30

    Python数据分析常用模块的介绍与使用

    Pandas是基于Numpy构建的数据分析库,但它比Numpy有更高级的数据结构和分析工具,如Series类型、DataFrame类型等。...缺失值处理:可以使用Pandas提供的函数来处理Series中的缺失值,如isnull、fillna和dropna。...行 describe() 返回所有数值列的统计信息,即返回DataFrame各列的统计摘要信息,如平均值、最大值、最小值等 max(axis=0) /min(axis = 0) 默认列方向各列的最大/最小值...info() 对所有数据进行简述,即返回DataFrame的信息,包括每列的数据类型和非空值的数量 isnull() 检测空值,返回一个元素类型为布尔值的DataFrame,当出现空值时返回True,...否则返回False dropna() 删除数据集合中的空值 value_counts 查看某列各值出现次数 count() 对符合条件的统计次数 sort_values() 对数据进行排序,默认升序 sort_index

    32010

    数据清洗 Chapter07 | 简单的数据缺失处理方法

    一、删除法 把数据看作是一个NxD的二维矩阵,N代表数据记录的数量,D代表属性的数量 ?...如果缺失值数量较少,样本数据足够大,删除缺失数据是最方便的处理方法 1、导入数据集Airbnb import pandas as pd import numpy as np data = pd.read_csv...,成为合适的选择 通常来说,可使用均值、中位数和众数对缺失值进行填补 1、使用Numpy库随机生成一个4行3列,含有缺失值的数据矩阵gen_data import pandas as pd import...2、根据属性的不同类型,把含缺失值的属性进行缺失值填补 数值型:使用缺失值所在列的其他数据记录取值的均值、中位数进行填补 非数值型:使用同列其他数据记录取值次数最高的数值(众数)进行填补 1、...五、特殊值填补 把缺失值,空值等当作特殊取值来处理,区别任何其他的属性取值 将所有的缺失位置用None,unknown等来填充 但是这种方法可能会导致严重的数据偏离,无法准确表达原始数据的含义

    1.8K10

    超级攻略!PandasNumPyMatrix用于金融数据准备

    表示时间窗的大小,注意有两种形式(int or offset)。如果使用int,则数值表示计算统计量的观测值的数量即向前几个数据。 如果是offset类型,表示时间窗的大小。...float, str, timedelta, optional 半衰期,根据半衰期指定衰减, α=1−\exp(−\ln(2)/halflife),halflife > 0 如果times指定,则观察值衰减到其值一半的时间单位...loc类似,但是比loc有更快的访问数据的速度,而且只能访问单个元素,不能访问多个元素。...))) >>> cols ['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume', 'ewm'] # loc是DataFrame有索引标记的值的...由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。矩阵运算在科学计算中非常重要,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置 。

    5.8K10

    Python数据分析与实战挖掘

    [3]判定系数r² 3、主要函数 主要是Pandas用于数据分析和Matplotlib用于数据可视化 《贵阳大数据分析师培训机构 》 Pandas主要统计特征函数 sum 总和(按列) mean 算数平均值...例:将异常点取空,然后取缺值点前后5个值进行拉格朗日插值 异常值处理:异常值是否剔除看情况,因为有些异常值可能含有有用信息 常用异常值处理方法 删除记录 直接删除 视为缺失值 视为缺失值进行缺失值的处理...》 interpolate 一维、高维插值,如拉格朗日、样条插值等 Scipy unique 去除重复 Pandas/Numpy isnull 判断是否为空 Pandas notnull 判断是否非空...例:将异常点取空,然后取缺值点前后5个值进行拉格朗日插值 异常值处理:异常值是否剔除看情况,因为有些异常值可能含有有用信息 常用异常值处理方法 《贵州大数据培训》 删除记录 直接删除 视为缺失值 视为缺失值进行缺失值的处理...一维、高维插值,如拉格朗日、样条插值等 Scipy unique 去除重复 Pandas/Numpy isnull 判断是否为空 Pandas notnull 判断是否非空 Pandas PCA 主成分分析

    3.7K60

    Python数据分析 | Numpy与2维数组操作

    axis参数的值实际上就是维度值,如第一个维是axis=0 ,第二维是axis=1,依此类推。因此,在2维数组中,axis=0指列方向,axis=1指行方向。...有多种方法可以从一维数组中得到列向量,但并不包括transpose: [7d01dcf72487c68c1e6d99d58b199391.png] 使用reshape操作添加新的axis可以更新数组形状和索引...,表示在指定位置添加一个空轴。...[999d1990e9901485c5a2434a69230cce.png] delete可以删除特定的行或列: [0e5a70728c56883d237c75bfa6ca0c8a.png] 相应插入操作为...在NumPy中有一种更好的方法,无需在内存中存储整个I和J矩阵(虽然meshgrid已足够优秀,仅存储对原始向量的引用),仅存储形状矢量,然后通过广播规实现其余内容的处理: [653cd2fa67dc7d7ae1f6b14d0aa6676f.png

    1.8K41

    Pandas库

    而对于需要多列数据处理、复杂的数据清洗和分析任务,DataFrame则更为适用,因为它提供了更为全面的功能和更高的灵活性。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...缺失值处理(Missing Value Handling) : 处理缺失值是时间序列数据分析的重要步骤之一。Pandas提供了多种方法来检测和填补缺失值,如线性插值、前向填充和后向填充等。...Pandas与其他数据分析库(如NumPy、SciPy)相比有哪些独特优势?...相比之下,NumPy主要关注数值计算和科学计算问题,其自身有较多的高级特性,如指定数组存储的行优先或者列优先、广播功能以及ufunc类型的函数,从而快速对不同形状的矩阵进行计算。

    8410

    MySQL存储引擎 InnoDB 介绍

    自动增长列特点 (AUTO_INCREMENT)   InnoDB表的自动增长列可以手工插入,但插入的值如果是空或者是0,则实际插入的将是自动增长的值,下面演示下 CREATE TABLE autoincre_demo...,该值是保留在内存中,如重启数据库这个强制的默认值就会丢失。...set null则表示在更新或者删除时,子表对应字段被设置为null。 了解后在看on delete ,restrict 是指:主表删除记录时,如果子表有对应记录,则不允许删除。   ...on update cascade 是指:主表更新记录时,如果子表有对应记录,则子表对应更新; --先维护下数据 INSERT INTO country(country) VALUES('中国'); INSERT...INTO city (country_id) VALUES(1); -- 先试下on delete ,restrict的作用,主表删除记录时,如果子表有对应记录,则不允许删除 DELETE FROM

    1.2K20

    knn算法实现手写数字识别的背景_knn手写数字识别60000训练集

    所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 属于监督学习,有类别标记,且KNN是惰性学习。...素材模型:(源码+素材最后会贴上githup的链接) KNN 手写数字识别 实现思路: 将测试数据转换成只有一列的0-1矩阵形式 将所有(L个)训练数据也都用上方法转换成只有一列的0-1矩阵形式...把L个单列数据存入新矩阵A中——矩阵A每一列存储一个字的所有信息 用测试数据与矩阵A中的每一列求距离,求得的L个距离存入距离数组中 从距离数组中取出最小的K个距离所对应的训练集的索引 拥有最多索引的值就是预测值...#导入数据处理库pandas 安装方法pip install pandas import numpy as np #导入科学计算库...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    1.1K40

    Pandas入门2

    Series对象有value_counts方法可以得到值的集合,以及这些值出现的次数。 ?...image.png notnull方法为isnull方法结果的取反 fillna方法可以填充缺失值。 dropna方法可以根据行列中是否有空值进行删除。...这个方法有2个参数: 关键字参数how,可以填入的值为any或all,any表示只要有1个空值则删除该行或该列,all表示要一行全为空值则删除该行。...Python中的字符串处理 对于大部分应用来说,python中的字符串应该已经足够。 如split()函数对字符串拆分,strip()函数对字符串去除两边空白字符。...Pandas中的时间序列 不管在哪个领域中(如金融学、经济学、生态学、神经科学、物理学等),时间序列数据都是一种重要的结构化数据形式。在多个时间点观察或者测量到的任何事物都是可以形成一段时间序列。

    4.2K20

    python数据处理 tips

    在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...df.head()将显示数据帧的前5行,使用此函数可以快速浏览数据集。 删除未使用的列 根据我们的样本,有一个无效/空的Unnamed:13列我们不需要。我们可以使用下面的函数删除它。...注意:请确保映射中包含默认值male和female,否则在执行映射后它将变为nan。 处理空数据 ? 此列中缺少3个值:-、na和NaN。pandas不承认-和na为空。...在该方法中,如果缺少任何单个值,则整个记录将从分析中排除。 如果我们确信这个特征(列)不能提供有用的信息或者缺少值的百分比很高,我们可以删除整个列。...现在你已经学会了如何用pandas清理Python中的数据。我希望这篇文章对你有用。如果我有任何错误或打字错误,请给我留言。

    4.4K30

    十分钟掌握Pandas基本操作(上)

    () 显示行列信息 df.index # 列索引 df.columns # 行索引 df.values # array对象 df.dtypes # 列元素属性 删除行列 df.drop(...['#'],axis=1,inplace=True) # 删除‘#’列数据,在原DataFrame上改变 df.drop([1,2,3],axis=0) # 删除行索引为1、2、3的行,不在原DataFrame...'].value_counts() # Type2每种共有多少条 检测空值 df.isnull().sum().sort_values(ascending=False) # 将空值判断进行汇总,按从高到低排序...'], inplace=True) # 将所有Type2空缺值填为其对应Type1的值 删除空值 df.dropna(how='any') # 去除所有包含空值的行 去重 df.drop_duplicates...参考资料 Pandas官方文档 ——END—— 推荐阅读 我用Python在网上复制文字的几种实用方法 混淆矩阵及其可视化 一次免费代理ip的爬取实战

    81512
    领券