首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python科学计算之Pandas

在Pandas中,一个条目等同于一行,所以我们可以通过len方法获取数据的行数,即条目数。 ? 这将给你一个整数告诉你数据的行数。在我的数据集中,我有33行。...注意到当我们提取了一列,Pandas将返回一个series,而不是一个dataframe。是否还记得,你可以将dataframe视作series的字典。...在返回的series中,这一行的每一列都是一个独立的元素。 可能在你的数据集里有年份的列,或者年代的列,并且你希望可以用这些年份或年代来索引某些行。这样,我们可以设置一个(或多个)新的索引。 ?...这便是使用apply的方法,即如何对一列应用一个函数。如果你想对整个数据集应用某个函数,你可以使用dataset.applymap()。...当我们以年份这一列进行合并时,仅仅’jpn_rainfall’这一列和我们UK雨量数据集的对应列进行了合并。 ?

2.9K00

直观地解释和可视化每个复杂的DataFrame操作

大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ? 结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。...融合二维DataFrame可以解压缩其固化的结构并将其片段记录为列表中的各个条目。 Explode Explode是一种摆脱数据列表的有用方法。...要记住:从外观上看,堆栈采用表的二维性并将列堆栈为多级索引。 Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。...尽管可以通过将axis参数设置为1来使用concat进行列式联接,但是使用联接 会更容易。 请注意,concat是pandas函数,而不是DataFrame之一。

13.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas GroupBy 深度总结

    过程都涉及以下 3 个步骤的某种组合: 根据定义的标准将原始对象分成组 对每个组应用某些函数 整合结果 让我先来大致浏览下今天用到的测试数据集 import pandas as pd import numpy...例如,在我们的案例中,我们可以按奖项类别对诺贝尔奖的数据进行分组: grouped = df.groupby('category') 也可以使用多个列来执行数据分组,传递一个列列表即可。...(变换):按组进行一些操作,例如计算每个组的z-score Filtration(过滤):根据预定义的条件拒绝某些组,例如组大小、平均值、中位数或总和,还可以包括从每个组中过滤掉特定的行 Aggregation...,每个数字列的平均值作为分组 我们可以直接在 GroupBy 对象上应用其他相应的 Pandas 方法,而不仅仅是使用 agg() 方法。...为此我们可以选择 GroupBy 对象的 PrizeAmountAdjusted 列,就像我们选择 DataFrame 的列,然后对其应用 sum() 函数: grouped['prizeAmountAdjusted

    5.8K40

    DataFrame和Series的使用

    df.dtypes df.info() Pandas与Python常用数据类型对照 加载筛选数据 df根据列名加载部分列数据:加载一列数据,通过df['列名']方式获取,加载多列数据,通过df[['列名...df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...[:,[0,2,4,-1]] df.iloc[:,0:6:2] # 所有行, 第0 , 第2 第4列 可以通过行和列获取某几个格的元素 分组和聚合运算 先将数据分组 对每组的数据再去进行统计计算如...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...pop','gdpPercap']].mean() # 根据year分组,查看每年的life平均值,pop平均值和gpd平均值,用mean做聚合运算 也可以根据两个列分组,形成二维数据聚合 df.groupby

    10910

    python数据科学系列:pandas入门详细教程

    自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...count、value_counts,前者既适用于series也适用于dataframe,用于按列统计个数,实现忽略空值后的计数;而value_counts则仅适用于series,执行分组统计,并默认按频数高低执行降序排列...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。...一般而言,分组的目的是为了后续的聚合统计,所有groupby函数一般不单独使用,而需要级联其他聚合函数共同完成特定需求,例如分组求和、分组求均值等。 ?

    15K20

    Pandas图鉴(一):Pandas vs Numpy

    3.增加一列 从语法和架构上来说,用Pandas添加列要好得多: Pandas不需要像NumPy那样为整个数组重新分配内存;它只是为新的列添加一个引用,并更新一个列名的 registry。...4.快速元素搜索 对于NumPy数组,即使搜索的元素是第一个,仍然需要与数组大小成比例的时间来找到它。使用Pandas,可以对我们预期最常被查询的列进行索引,并将搜索时间减少到On。...5.按列连接 如果想用另一个表的信息来补充一个基于共同列的表,NumPy几乎没有用。而Pandas更好,特别是对于1:n的关系。...Pandas连接有所有熟悉的 inner, left, right, 和 full outer 连接模式。 6.按列分组 数据分析中另一个常见的操作是按列分组。...这里的values属性提供了对底层NumPy数组的访问,并带来了3-30倍的速度提升。 答案是否定的。Pandas 在这些基本操作上是如此缓慢,因为它正确地处理了缺失值。

    35350

    Pandas数据分析

    分析前操作 我们使用read读取数据集时,可以先通过info 方法了解不同字段的条目数量,数据类型,是否缺失及内存占用情况 案例:找到小成本高口碑电影  思路:从最大的N个值中选取最小值 movie2....','imdb_score']] movie2.sort_values('title_year',ascending=False) # 针对某一列/几列值对整个df进行排序 movie3 = movie2...axis的默认值是index 按行添加 向DataFrame添加一列,不需要调用函数,通过dataframe['列名'] = ['值'] 即可 通过dataframe['列名'] = Series对象...这种方式添加一列 数据连接 merge 数据库中可以依据共有数据把两个或者多个数据表组合起来,即join操作 DataFrame 也可以实现类似数据库的join操作,Pandas可以通过pd.join命令组合数据...) merge: DataFrame方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame的列或行索引 默认是内连接(也可以设为左连接、

    11910

    python数据分析——数据分类汇总与统计

    1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...【例4】对groupby对象进行迭代,并打印出分组名称和每组元素。 关键技术:采用for函数进行遍历, name表示分组名称, group表示分组数据。...拿上面例子中的df来说,我们可以根据dtype对列进行分组: print(df.dtypes) grouped = df.groupby(df.dtypes,axis = 1) 可以如下打印分组: for...首先,根据day和smoker对tips进行分组,然后采用agg()方法一次应用多个函数。 如果传入一组函数或函数名,得到的DataFrame的列就会以相应的函数命名。...: 行名称 margins : 总计行/列 normalize:将所有值除以值的总和进行归一化,为True时候显示百分比 dropna :是否刪除缺失值 【例19】根据国籍和用手习惯对这段数据进行统计汇总

    82910

    pandas分组聚合转换

    ,比如根据性别,如果现在需要根据多个维度进行分组,只需在groupby中传入相应列名构成的列表即可。...,如果希望通过一定的复杂逻辑来分组,比如根据学生体重是否超过总体均值来分组,同样还是计算身高的均值。...分组之后, 如果走聚合, 每一组会对应一条记录, 当分组之后, 后续的处理不要影响数据的条目数, 把聚合值和每一条记录进行计算, 这时就可以使用分组转换(类似SQL的窗口函数) def my_zscore...mean(聚合值)值进行计算,列数与原来一样: 可以看出条目数没有发生变化:  对身高和体重进行分组标准化,即减去组均值后除以组的标准差: gb.transform(lambda x: (x-x.mean...'new_column',其值为'column1'中每个元素的两倍,当原来的元素大于10的时候,将新列里面的值赋0   import pandas as pd data = {'column1':[1

    12010

    Pandas数据聚合:groupby与agg

    基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。通过agg,我们可以一次性对多个列应用不同的聚合函数,极大地提高了数据处理的灵活性和效率。...检查拼写是否正确,并确认列确实存在于DataFrame中。 TypeError: 当尝试对非数值类型的数据应用某些聚合函数(如求和)时,可能会遇到类型错误。...) 多列聚合 基本用法 多列聚合是指同时对多个列进行分组和聚合计算。...sum', 'mean']) print("\n对同一列应用多个聚合函数:") print(multi_func_agg_result) 总结 通过对Pandas groupby和agg的学习,我们可以更好地理解和运用这一强大工具来满足各种数据分析需求

    41810

    利用Pandas数据过滤减少运算时间

    当处理大型数据集时,使用 Pandas 可以提高数据处理的效率。Pandas 提供了强大的数据结构和功能,包括数据过滤、筛选、分组和聚合等,可以帮助大家快速减少运算时间。...1、问题背景我有一个包含37456153行和3列的Pandas数据帧,其中列包括Timestamp、Span和Elevation。...我创建了一个名为mesh的numpy数组,它保存了我最终想要得到的等间隔Span数据。最后,我决定对数据帧进行迭代,以获取给定的时间戳(代码中为17300),来测试它的运行速度。...是否有办法可以加快此循环的速度?感谢任何意见!...这些技巧可以帮助大家根据特定条件快速地筛选出需要的数据,从而减少运算时间。根据大家的具体需求和数据集的特点,选择适合的方法来进行数据过滤。

    11510

    在Python中实现Excel的VLOOKUP、HLOOKUP、XLOOKUP函数功能

    尽管表2包含相同客户的多个条目,但出于演示目的,我们仅使用第一个条目的值。例如,对于Harry,我们想带入其购买的“Kill la Kill”。...在第一行中,我们用一些参数定义了一个名为xlookup的函数: lookup_value:我们感兴趣的值,这将是一个字符串值 lookup_array:这是源数据框架中的一列,我们正在查找此数组/列中的...pandas系列的一个优点是它的.empty属性,告诉我们该系列是否包含值或空,如果match_value为空,那么我们知道找不到匹配项,然后我们可以通知用户在数据中找不到查找值。...最后,因为我们只想保留第一个值(如果有多个条目),所以我们通过从返回的列表中指定[0]来选择第一个元素。 让我们测试一下这个函数,似乎工作正常!...默认情况下,其值是=0,代表行,而axis=1表示列 args=():这是一个元组,包含要传递到func中的位置参数 下面是如何将xlookup函数应用到数据框架的整个列。

    7.4K11

    Python数据分析及可视化-小测验

    柱形图.png 1.4 第四步:根据订单编号(order_id)进行分组,求出每个订单花费的总金额,例如订单编号为1的总金额为11.56美元。...item_price这个单词是一个条目的价格,不是单个商品的单价。 我们平时超市购物的单子的最后price那一列也是算的这一个条目的价格,比如2个相同的商品算1个条目。...---我是分割线-------------\n") print(text) 4.4 第四步:提取出原始数据中的第一行review列中的文本数据,并用display函数进行输出显示 text1...df中,并生成一列清洗之后的数据列,名为clean_review df['clean_review'] = df.review.apply(clean_text) df.head() 上面一段代码的运行结果如下图所示...baby_df.Gender.value_counts() 5.5 第五步:按照Name字段将数据集进行分组并求和赋值给变量names,最后输出前五行 names = new_df.groupby('

    2.2K20

    最全面的Pandas的教程!没有之一!

    我们可以用加减乘除(+ - * /)这样的运算符对两个 Series 进行运算,Pandas 将会根据索引 index,对响应的数据进行计算,结果将会以浮点数的形式存储,以避免丢失精度。 ?...分组统计 Pandas 的分组统计功能可以按某一列的内容对数据行进行分组,并对其应用统计函数,比如求和,平均数,中位数,标准差等等… 举例来说,用 .groupby() 方法,我们可以对下面这数据表按...排序 如果想要将整个表按某一列的值进行排序,可以用 .sort_values() : ? 如上所示,表格变成按 col2 列的值从小到大排序。...Pandas 的数据透视表能自动帮你对数据进行分组、切片、筛选、排序、计数、求和或取平均值,并将结果直观地显示出来。比如,这里有个关于动物的统计表: ?...,index 表示按该列进行分组索引,而 columns 则表示最后结果将按该列的数据进行分列。

    26K64

    在Pandas中实现Excel的SUMIF和COUNTIF函数功能

    图3:Python pandas布尔索引 使用已筛选的数据框架,可以选择num_calls列并计算总和sum()。...可以使用上面的方法循环五个行政区的名称,然后逐个计算,但这有点低效。 使用groupby()方法 pandas库有一个groupby()方法,允许对组进行简单的操作(例如求和)。...Pandas中的SUMIFS SUMIFS是另一个在Excel中经常使用的函数,允许在执行求和计算时使用多个条件。 这一次,将通过组合Borough和Location列来精确定位搜索。...本质上是使用按位与运算符&将两个条件结合起来。注意,这两个条件周围的括号是必不可少的。...虽然pandas中没有SUMIF函数,但只要我们了解这些值是如何计算的,就可以自己复制/创建相同功能的公式。

    9.2K30

    如何用 Python 和 Pandas 分析犯罪记录开放数据?

    利用 NCTCOG 提供的新 Waze 数据,我改进了之前在 HackNTX 2018 做的深度学习模型,取得了不小的进展。 ? 对我而言,另一项收获,是参加了这次活动的主题报告。 ?...本文,我借鉴 Richard 的分析思路,换成用 Python 和数据分析包 Pandas 对该数据集进行分析和可视化。希望通过这个例子,让你了解开放数据的获取、整理、分析和可视化。...为了你能够更为深入地学习与了解代码,我建议你在 Google Colab 中开启一个全新的 Notebook ,并且根据下文,依次输入代码并运行。在此过程中,充分理解代码的含义。...这里我们使用的是 Pandas 中的 value_counts 函数。它可以帮助我们自动统计某一列中不同类别出现的次数,而且还自动进行排序。为了显示的方便,我们只要求展示前10项内容。...注意最后多出来的一列,确实已经变成了我们希望转换的形式。 依然按照前面的方法,我们分组统计每一条街道上的犯罪数量,并且进行排序。

    1.9K20

    【数据处理包Pandas】DataFrame数据选择的基本方法

    ,其中每个元素对应于相应的 ‘Q1’ 列元素是否大于或等于 ‘Q1’ 列的平均值。...副本df2与原始的 DataFrame df具有相同的数据和结构,但它们是独立的对象,对其中一个对象的操作不会影响另一个对象。因此,通过这样的方式可以安全地对df2进行任何需要的修改或处理。...其中lambda x: sum(x['Q1':'Q4'])表示对每一行从 ‘Q1’ 到 ‘Q4’ 列进行求和操作。而axis=1参数指定了按行操作。...因此,该代码将会对 DataFrame df2中的每一行,从 ‘Q1’ 到 ‘Q4’ 列的值进行求和,并返回一个包含每一行求和结果的 Series。...3、返回一个包含每个分组中 ‘Q1’ 和 ‘Q4’ 列的最大值: df.groupby('team')['Q1','Q4'].apply(max) 对 DataFrame df根据 ‘team’ 列进行分组

    8500

    告诉你怎么创建pandas数据框架(dataframe)

    然而,如果你打算创建两列,第一列包含a中的值,第二列包含b中的值,该怎么办?你仍然可以使用列表,但这一次必须将其zip()。 图4 好的,但是zip对象到底是什么?...它实际上是一个迭代器,只是一个对象,你可以通过它进行迭代(循环)。一般来说,如果你想查看迭代器中的内容,只需执行一个循环,然后像下面这样打印出迭代器中的元素。 图5 还记得列表[a,b]的样子吗?...现在,如果从该迭代器创建一个数据框架,那么将获得两列数据: 图6 从字典创建数据框架 最让人喜欢的创建数据框架的方法是从字典中创建,因为其可读性最好。...图9 小结 记住,数据框架是相当灵活的,一旦创建它,你就可以调整其大小以满足需要。我们可以自由地将行或列插入数据框架,反之亦然(使用我们之前的10 x 5数据框架示例)。...例如,我们可以按降序对数据框架行进行排序: 图11

    2K30

    自定义RecyclerView打造Android TV桌面

    最近家里网络出问题了,不能按约定时间将很多不错的文章第一时间推到你的手中,对您说声道歉!本公众号以后也会由其他人打理来发文章!以方便你第一时间阅读供稿者的文章! ?...---- 这里封装了RecyclerView实现了下面的一些功能: 1.响应五向键,按下五向键的上下左右会跟着移动,并获得焦点,在获得焦点时会抬高。 2.在鼠标hover在条目上时会获得焦点。...3.添加了条目的点击和长按事件。 4.添加了是否第一个可见条目和是否是最后一个可见条目的方法。 5.在item获得焦点时和失去焦点时,这里有相应的回调方法。...获得焦点时条目会抬高,这里是抬高了Z轴。 6.获取在第一个和最后一个可见的条目,根据这些状态去显示和隐藏左右箭头。...,我发现拿到的数据并不是一种情况,当一共有三行时。

    2.6K20
    领券