首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

对比Excel,Python pandas在数据框架中插入列

该方法接受以下参数: loc–用于插入的索引号 column–列名称 value–要插入的数据 让我们使用前面的示例来演示。我们的目标是在第一列之后插入一个值为100的新列。...注意,此方法还可以通过向原始df添加一个新列来覆盖它,这正是我们所需要的。但是,使用此方法无法选择要添加新列的位置,它将始终添加到数据框架的末尾。...通过重新赋值更改列顺序 那么,如果我想在“新列”列之后插入这一列列,该怎么办?没问题! 记住,我们可以通过将列名列表传递到方括号中来引用多列?...图3 这样,我们可以根据自己的喜好对列名列表进行排序,然后将重新排序的数据框架重新分配给原始df。...图5 插入多列到数据框架中 insert()和”方括号”方法都允许我们一次插入一列。如果需要插入多个列,只需执行循环并逐个添加列。

2.9K20

python数据处理和数据清洗

2 # 使用print()输出df print(df) 什么叫做添加新列,就是我们在数学建模对于数据集合进行处理的时候,对于海量的数据,我们可能会根据这个已知的数据添加新的变量之类的,这个新的变量就是我们通过已知的数据得到的新的数据变量...,by=""表示的是对于某一列的内容进行处理,ascending=False表示的就是以降序的形式进行排序,如果我们没有写这个参数或者是等于true,都是以升序的形式进行排序; # 使用sort_values...()对df的"性价比评分"列进行降序排序,并赋值给df_1 df_1 = df.sort_values(by="性价比评分",ascending=False) # 使用sort_values()对df...的"氛围评分"列进行降序排序,并赋值给df_2 df_2 = df.sort_values(by="氛围评分",ascending=False) # 使用print()输出df_1 print(df...7.1快速浏览数据 我们上面已经完成了准备的工作,就是把这个相关的单位进行修正,和我们的这个时间序列的转换 下面我们使用这个info函数快速地浏览全部数据,确定每一列的数据的缺失情况,这个函数相当于print

10810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    快速提升效率的6个pandas使用小技巧

    检测并处理缺失值 有一种比较通用的检测缺失值的方法是info(),它可以统计每列非缺失值的数量。...') 用后一列对应位置的值替换缺失值: df.fillna(axis=1, method='bfill') 使用某一列的平均值替换缺失值: df['Age'].fillna(value=df['Age...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。...,并且使用concat()方法进行列合并(注意这里axis=1),得到结果: 本文就到这里,pandas还有很多让人惊喜的小技巧,大家有兴趣也可以在评论区说说你的使用心得。

    3.3K10

    Pandas图鉴(一):Pandas vs Numpy

    Pandas 给 NumPy 数组带来的两个关键特性是: 异质类型 —— 每一列都允许有自己的类型 索引 —— 提高指定列的查询速度 事实证明,这些功能足以使Pandas成为Excel和数据库的强大竞争者...当用于一般用途时,它们有以下缺点: 不太直观(例如,你将面临到处都是的常数); 与普通的NumPy数组相比,有一些性能问题; 在内存中连续存储,所以每增加或删除一列都需要对整个数组进行重新分配...如果将每一列存储为一个单独的NumPy向量。之后可以把它们包成一个dict,这样,如果以后需要增加或删除一两行,就可以更容易恢复 "数据库" 的完整性。...2.按columns排序 如果我们需要使用权重列按价格列打破平局进行排序,那么对于NumPy来说却有些糟糕: 如果选择使用NumPy,我们首先按重量排序,然后再按价格应用第二次排序。...3.增加一列 从语法和架构上来说,用Pandas添加列要好得多: Pandas不需要像NumPy那样为整个数组重新分配内存;它只是为新的列添加一个引用,并更新一个列名的 registry。

    35250

    6个提升效率的pandas小技巧

    检测并处理缺失值 有一种比较通用的检测缺失值的方法是info(),它可以统计每列非缺失值的数量。...') 用后一列对应位置的值替换缺失值: df.fillna(axis=1, method='bfill') 使用某一列的平均值替换缺失值: df['Age'].fillna(value=df['Age...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。...), axis=1) sorted(glob('data/data_row_*.csv'))返回文件名,然后逐个读取,并且使用concat()方法进行列合并(注意这里axis=1),得到结果: ?

    2.9K20

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    Series 序列是表示 DataFrame 的一列的数据结构。使用序列类似于引用电子表格的列。 4. Index 每个 DataFrame 和 Series 都有一个索引,它们是数据行上的标签。...在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...按值排序 Excel电子表格中的排序,是通过排序对话框完成的。 pandas 有一个 DataFrame.sort_values() 方法,它需要一个列列表来排序。

    19.6K20

    6个提升效率的pandas小技巧

    检测并处理缺失值 有一种比较通用的检测缺失值的方法是info(),它可以统计每列非缺失值的数量。...') 用后一列对应位置的值替换缺失值: df.fillna(axis=1, method='bfill') 使用某一列的平均值替换缺失值: df['Age'].fillna(value=df['Age...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。...), axis=1) sorted(glob('data/data_row_*.csv'))返回文件名,然后逐个读取,并且使用concat()方法进行列合并(注意这里axis=1),得到结果: ?

    2.4K20

    Pandas速查手册中文版

    (1)官网: Python Data Analysis Library (2)十分钟入门Pandas: 10 Minutes to pandas 在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法...):返回按列col1分组的所有列的均值 data.apply(np.mean):对DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1):对DataFrame...中的每一行应用函数np.max 数据合并 df1.append(df2):将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部 df1...df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数 df.max():返回每一列的最大值 df.min():返回每一列的最小值 df.median():返回每一列的中位数...df.std():返回每一列的标准差

    12.2K92

    python数据科学系列:pandas入门详细教程

    、切片访问、通函数、广播机制等 series是带标签的一维数组,所以还可以看做是类字典结构:标签是key,取值是value;而dataframe则可以看做是嵌套字典结构,其中列名是key,每一列的series...index/columns/values,分别对应了行标签、列标签和数据,其中数据就是一个格式向上兼容所有列数据类型的array。...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。...两种分组聚合形式 pivot,pivot英文有"支点"或者"旋转"的意思,排序算法中经典的快速排序就是不断根据pivot不断将数据二分,从而加速排序过程。用在这里,实际上就是执行行列重整。...仍然考虑前述学生成绩表的例子,但是再增加一列班级信息,需求是统计各班级每门课程的平均分。

    15K20

    Pandas 秘籍:1~5

    对于 Pandas 用户来说,了解序列和数据帧的每个组件,并了解 Pandas 中的每一列数据正好具有一种数据类型,这一点至关重要。...由于列都是数字,因此此操作按预期进行。 每列中都有一些缺失值,但在操作后它们仍然缺失。 从数学上讲,添加.005应该足够,以便下一步的底数分割正确舍入到最接近的整数百分比。...我们可以计算每一行的所有缺失值,并对所得的序列从最高到最低进行排序。...正如我们在最后一步中按年份和得分排序一样,我们获得的年度最高评分电影。 更多 可以按升序对一列进行排序,而同时按降序对另一列进行排序。...用sort_values替代nlargest 前两个秘籍的工作原理类似,它们以略有不同的方式对值进行排序。 查找一列数据的顶部n值等同于对整个列进行降序排序并获取第一个n值。

    37.6K10

    Python数据分析笔记——Numpy、Pandas库

    2、DataFrame (1)概念: DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...(3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...Pandas基本功能 1、重新索引 Pandas对象的一个方法就是重新索引(reindex),其作用是创建一个新的索引,pandas对象将按这个新索引进行排序。对于不存在的索引值,引入缺失值。...(2)DataFrame与Series之间的运算 将DataFrame的每一行与Series分别进行运算。...obj.rank() (2)DataFrame数据结构的排序和排名 按索引值进行排列,一列或多列中的值进行排序,通过by将列名传递给sort_index. 5、缺失数据处理 (1)滤出缺失数据 使用data.dropna

    6.4K80

    Pandas速查卡-Python数据科学

    它不仅提供了很多方法和函数,使得处理数据更容易;而且它已经优化了运行速度,与使用Python的内置函数进行数值数据处理相比,这是一个显著的优势。...) 所有列的唯一值和计数 选择 df[col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1...=max) 创建一个数据透视表,按col1分组并计算col2和col3的平均值 df.groupby(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

    9.2K80

    如何在矩阵的行上显示“其他”【1】

    想要的结果如下(前10名显示,后面的为others): 思路上其实非常简单:通过构建一个新的表,将销售额度量值放进去,排序,前10名用原先的类别,后面的都替换为others,拖到表中排序即可。...上面这个问题其实简单,解决也很快速,但是我会分为多篇文章来写,每一篇文章的最后我会放一个图,用该篇文章的办法是做不到的,但是只要再多写几步,就可以完成,大家可以先进行思考,请大家持续关注。...] 注意此处[sales]是另一个表的度量值,在DAX圣经中,意大利人特地说明,引用度量值不带表,引用列必须用表。...4.排序: sales.rankx = RANKX('子类别表','子类别表'[sales]) 注意此处的[sales]是表的列,所以必须带着表名。...5.新的名称: 子类别2 = IF([sales.rankx]<=10,[子类别],"others") 排序后大于10的都显示为others。 5.上图,按照销售额或者百分比排序: OK了!

    1.8K20

    pandas入门①数据统计

    本指南直接来自pandas官方网站上的10分钟pandas指南。 我将它改写以使代码更易于访问。 本指南适用于之前未使用pandas的初学者。...对象中每一列的唯一值和计数 数据排序 df.sort_index(axis=1, ascending=False) # 即按列名排序,交换列位置。...df.sort_values(by='B') # 按照列B的值升序排序 数据选取 df[col]:根据列名,并以Series的形式返回列 df[[col1, col2]]:以DataFrame形式返回多列...df.mean():返回所有列的均值 df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数 df.max():返回每一列的最大值 df.min():返回每一列的最小值...df.median():返回每一列的中位数 df.std():返回每一列的标准差

    1.5K20

    Python科学计算之Pandas

    在返回的series中,这一行的每一列都是一个独立的元素。 可能在你的数据集里有年份的列,或者年代的列,并且你希望可以用这些年份或年代来索引某些行。这样,我们可以设置一个(或多个)新的索引。 ?...对数据集应用函数 有时候你会想以某些方式改变或是操作你数据集中的数据。例如,如果你有一列年份的数据而你希望创建一个新的列显示这些年份所对应的年代。...Pandas对此给出了两个非常有用的函数,apply和applymap。 ? 这会创建一个名为‘year‘的新列。这一列是由’water_year’列所导出的。它获取的是主年份。...首先,它设置了一个新的索引(set_index()),然后它对这个索引排序(sort_index()),最后它会进行unstack操作。组合起来就是一个pivot操作。...当我们以年份这一列进行合并时,仅仅’jpn_rainfall’这一列和我们UK雨量数据集的对应列进行了合并。 ?

    2.9K00

    【优质原创】介绍一个效率爆表的探索性数据分析插件

    今天给大家介绍一款十分强大的数据集探索性分析插件,D-Tale,供我们分析和了解数据集的基本情况,并且支持对数据进行进一步的可视化分析,首先我们先要安装好该模块 pip install dtale 用...,然后点击Apply即可实现,当然我们还可以点击对应的某一列,然后鼠标拉到底,同样也能进行操作,步骤如下 其他的数据基本操作 我们同样地可以对数据进行排序,在我们点击到某一列的时候,会弹出如下的选项框..., 其中就包括了对数据进行排序的按钮,例如我们对gdp_cap这一列进行降序排序,步骤如下 我们还能够对数据集当中的每一列进行重命名,使用的是Rename这个选项按钮,步骤如下 那么如果是想要删除某一列的话...,对应的则是Delete这个选项按钮了,相当于是Pandas当中的drop方法 而当我们点击Describe这个按钮之后,会出现针对某一列的统计性分析,如下图所示 并且可以通过图表可视化的形式来更加直观地展现统计分析的最终结果...,感兴趣的读者可以空的时候加以尝试 要是数据集当中存在缺失值,同样也可以通过图表的形式来展现,因为之前引用的数据集不存在缺失值,因为这里更改成另外的数据集来操作,步骤如下图所示 设置选项 我们来看一下工具栏中的

    45220

    PySpark SQL——SQL和pd.DataFrame的结合体

    最大的不同在于pd.DataFrame行和列对象均为pd.Series对象,而这里的DataFrame每一行为一个Row对象,每一列为一个Column对象 Row:是DataFrame中每一行的数据抽象...以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为(age+1)的新列。...接受参数可以是一列或多列(列表形式),并可接受是否升序排序作为参数。...select等价实现,二者的区别和联系是:withColumn是在现有DataFrame基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

    10K20

    pandas技巧4

    0.5的行 df.sort_index().loc[:5] #对前5条数据进行索引排序 df.sort_values(col1) # 按照列col1排序数据,默认升序排列 df.sort_values...、最小值的数据透视表 df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,支持df.groupby(col1).col2.agg(['min','max'...]) data.apply(np.mean) # 对DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1) # 对DataFrame中的每一行应用函数np.max...df.mean() # 返回所有列的均值 df.corr() # 返回列与列之间的相关系数 df.count() # 返回每一列中的非空值的个数 df.max() # 返回每一列的最大值 df.min...() # 返回每一列的最小值 df.median() # 返回每一列的中位数 pd.date_range('1/1/2000', periods=7) df.std() # 返回每一列的标准差

    3.4K20
    领券