一、前言 前几天在Python最强王者群【wen】问了一个pandas数据处理的问题,一起来看看吧。...二、实现过程 这里【隔壁山楂】给了一个提示,如下所示: 直接使用内置函数abs()取绝对值就阔以了,轻轻松松,顺利地解决了粉丝的问题! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【wen】提问,感谢【隔壁山楂】给出的思路和代码解析,感谢【莫生气】等人参与学习交流。
/二、解决方法/ 1、首先来看看文件内容,这里取其中一个文件的内容,如下图所示。 ? 当然这只是文件内容中的一小部分,真实的数据量绝对不是21个。...2、现在我们想对第一列或者第二列等数据进行操作,以最大值和最小值的求取为例,这里以第一列为目标数据,来进行求值。 ?...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨
Pandas部分应掌握的重要知识点 import numpy as np import pandas as pd 一、DataFrame数据框的创建 1、直接基于二维数据创建(同时使用index和columns...('M'),'Q1':'Q4'] 三、对数据框进行增删改操作 1、在数据框的尾部增加一列 df = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', '...1、分组及统计 针对team数据框,要求按’team’列统计各团队前两个季度的平均销售额: 方法1:先分组再选择列最后计算,推荐此种写法。...,本例中lambda函数的形参x代表每个分组 ④ 当组对象存在多列时,filter的过滤条件要求显式的指定某一列 六、处理缺失值 1、Pandas中缺失值的表示 Pandas表示缺失值的一种方法是使用...NaN(Not a Number),它是一个特殊的浮点数;另一种是使用Python中的None;Pandas会自动把None转变成NaN。
在这篇文章中,我们将介绍 Pandas 的内存使用情况,以及如何通过为数据框(dataframe)中的列(column)选择适当的数据类型,将数据框的内存占用量减少近 90%。...对象列(object columns)主要用于存储字符串,包含混合数据类型。为了更好地了解怎样减少内存的使用量,让我们看看 Pandas 是如何将数据存储在内存中的。...数据框的内部表示 在底层,Pandas 按照数据类型将列分成不同的块(blocks)。这是 Pandas 如何存储数据框前十二列的预览。 你会注意到这些数据块不会保留对列名的引用。...每个类型在 pandas.core.internals 模块中都有一个专门的类, Pandas 使用 ObjectBlock class 来代表包含字符串列的块,FloatBlock class 表示包含浮点型数据...你可以看到,存储在 Pandas 中的字符串的大小与作为 Python 中单独字符串的大小相同。 使用分类来优化对象类型 Pandas 在 0.15版引入了 Categoricals (分类)。
目录 柱状图 箱线图 密度图 条形图 散点图 折线图 保存绘图 总结 可视化是用来探索性数据分析最强大的工具之一。Pandas库包含基本的绘图功能,可以让你创建各种绘图。...Pandas中的绘图是在matplotlib之上构建的,如果你很熟悉matplotlib你会惊奇地发现他们的绘图风格是一样的。 本案例用到的数据集是关于钻石的。...输出结果显示,数据集包含53940个不同钻石的10个特征,其中有数值变量也有分类变量。...柱状图 柱状图是一个单变量图(注意区分柱状图和条形图),它将一个数值变量分组到各个数值单元中,并显示每个单元中的观察值数量。直方图是了解数值变量分布的一种有用工具。...这个直方图让我们更好地了解了分布中的一些细微差别,但我们不能确定它是否包含所有数据。将X轴限制在3.5可能会剔除一些异常值,以至于它们在原始图表中没有显示。
它作为一种编程语言提供了更广阔的生态系统和深度的优秀科学计算库。 在科学计算库中,我发现Pandas对数据科学操作最为有用。...◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...现在,很明显,有信用记录的人得到一笔贷款的可能性更高:与没有信用记录的人只有8%得到贷款相比,80%的有信用记录的人获得了一笔贷款。 然而不仅如此。其中包含了更有趣的信息。...数值类型的名义变量被视为数值 2. 带字符的数值变量(由于数据错误)被认为是分类变量。 所以手动定义变量类型是一个好主意。如果我们检查所有列的数据类型: ? ?...这样,我们就可以定义一个函数来读取文件,并指定每一列的数据类型。例如,我在这里已经创建了一个CSV文件datatypes.csv,如下所示: ? ?
# s = df['c'] print(s.astype(float)) # 将数组的格式转换为浮点数 # print(s.replace(5.0,'one')) # 将数组中的所有...df = pd.DataFrame(np.random.rand(10,5),columns=list('ABCDE')) print(df.apply(np.mean)) # 对数据框的每一列取平均值...print(df.apply(np.max,axis = 1)) # 对数据框的每一行取最大值 print(df.apply(np.max)) # 对数据框的每一列取最大值...1和数据框2结合起来 print(pd.concat([df1,df2],axis = 1)) # 在数据框1的列最后添加DF2 df1 = pd.DataFrame({'A': ['A0', '...()) # 得出每一列中的非空值个数 print(df.max()) # 得出每一列的最大数 print(df.min())
本文介绍的Pandas中关于数据变换的基本操作包括轴向旋转(6.2.2小节)、分组与聚合(6.2.3小节)、哑变量处理(6.2.4小节)和面元划分(6.2.5小节)。...pivot_table透视的过程如下图: 假设某商店记录了5月和6月活动期间不同品牌手机的促销价格,保存到以日期、商品名称、价格为列标题的表格中,若对该表格的商品名称列进行轴向旋转操作,即将商品名称一列的唯一值变换成列索引...,商品一列的唯一数据变换为列索引: # 将出售日期一列的唯一数据变换为行索引,商品一列的唯一数据变换为列索引 new_df = df_obj.pivot(index='出售日期', columns='商品名称...使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...cut()函数会返回一个Categorical类对象,该对象可以被看作一个包含若干个面元名称的数组,通过categories属性可以获取所有的分类,即每个数据对应的面元。
因此,前几个特征往往就能够解释数据集的大部分信息 案例集中包括3279行, 1559列数据,其中前1558列是图片的各种属性,最后一列是图表是否广告的标志,怎么从这1558列特征中找到哪些特征是判断广告的重要标准...as pd from collections import defaultdict #用pandas加载数据集,查看数据质量 data_folder = '' data_filename = os.path.join...converters = defaultdict(convert_number) #还想把最后一列的值转换为0或1,该列表示每条数据的类别。...print(ads[:5]) #数据集所描述的是网上的图像,目标是确定图像是不是广告。 #从数据集表头中无法获知梅列数据的含义。其他文件有更多的信息。前三个特征分别指图像的高 #度、宽度和宽高比。...最后一列是数据的类别,1表示是广告,0表示不是广告。 #抽取用于分类算法的x矩阵和y数组,x矩阵为数据框除去最后一列的所有列,y数组包含数据框的 #最后一列。
我们可以使用的另一种快速方法是: df.isna().sum() 这将返回数据帧中包含了多少缺失值的摘要。...条形图 条形图提供了一个简单的绘图,其中每个条形图表示数据帧中的一列。条形图的高度表示该列的完整程度,即存在多少个非空值。...这是在条形图中确定的,但附加的好处是您可以「查看丢失的数据在数据框中的分布情况」。 绘图的右侧是一个迷你图,范围从左侧的0到右侧数据框中的总列数。上图为特写镜头。...接近正1的值表示一列中存在空值与另一列中存在空值相关。 接近负1的值表示一列中存在空值与另一列中存在空值是反相关的。换句话说,当一列中存在空值时,另一列中存在数据值,反之亦然。...接近0的值表示一列中的空值与另一列中的空值之间几乎没有关系。 有许多值显示为<-1。这表明相关性非常接近100%负。
,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...agg:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum...、cumprod:计算分组的累积和、最小值、最大值、累积乘积 数据清洗 dropna: 丢弃包含缺失值的行或列 fillna: 填充或替换缺失值 interpolate: 对缺失值进行插值 duplicated...: 替换字符串中的特定字符 astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化
),第一列“学生”的左边还有一列数字0,1,2,3......1.2 统计各科平均分 在pandas中,计算均值的方法是mean: mean可以直接用在整个数据集(表格)上,这样会直接计算所有数值型字段的均值;也可以单独用着某个字段(列)上,在pandas中访问某个列...2.1 按照总分排序 在pandas中,可以使用sort_values来对数据进行排序: 如果ignore_index设置为False,则学生这一列的左侧的索引就会跟原来的索引一样,例如学生30的索引原来是...分组统计 分组统计有两种方式可以用,一种是分组(groupby),另一种是透视表。 我们在做数据分析时,分组统计是最基础的操作之一。...,二维异构表格 从理解上说,可以将Series理解为Excel中的列,一列就对应一个Series结构的数据,而DataFrame可以理解为对应一个Excel表格,一个表格可以包含多列(Series)。
如果你打算学习 Python 中的数据分析、机器学习或数据科学工具,大概率绕不开Pandas库。Pandas 是一个用于 Python 数据操作和分析的开源库。...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。...通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。
Python中对数据分组利用的是 groupby() 方法,类似于sql中的 groupby。...1.分组键是列名 分组键是列名时直接将某一列或多列的列名传给 groupby() 方法,groupby() 方法就会按照这一列或多列进行分组。...DataFrameGroupBy对象包含着分组后的若干数据,但是没有直接显示出来,需要对这些分组数据 进行汇总计算后才会显示。...df.groupby(["客户分类","区域"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 无论分组键是一列还是多列,只要直接在分组后的数据进行汇总运算,就是对所有可以计算的列进行计算...df.groupby("客户分类")["7月销量"].sum() ---- 2.分组键是Series 把DataFrame的其中一列取出来就是一个Series ,如df["客户分类"]。
如果你对pandas的学习很感兴趣,你可以参考我们的pandas教程指导博客(http://www.dataquest.io/blog/pandas-python-tutorial/),里面包含两大部分的内容...('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数...df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换...) df1.join(df2,on=col1,how='inner') SQL类型的将df1中的列与df2上的列连接,其中col的行具有相同的值。...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max
pandas已经为我们自动检测了数据类型,其中包括83列数值型数据和78列对象型数据。对象型数据列用于字符串或包含混合数据类型的列。...Dataframe对象的内部表示 在底层,pandas会按照数据类型将列分组形成数据块(blocks)。...每种数据类型在pandas.core.internals模块中都有一个特定的类。pandas使用ObjectBlock类来表示包含字符串列的数据块,用FloatBlock类来表示包含浮点型列的数据块。...对于包含数值型数据(比如整型和浮点型)的数据块,pandas会合并这些列,并把它们存储为一个Numpy数组(ndarray)。Numpy数组是在C数组的基础上创建的,其值在内存中是连续存储的。...Pandas用一个字典来构建这些整型数据到原数据的映射关系。当一列只包含有限种值时,这种设计是很不错的。
D-Tale插件打开数据集 我们在D-Tale中打开数据集,代码如下 import dtale import pandas as pd df = pd.read_csv(r'gapminder_full.csv...,然后点击Apply即可实现,当然我们还可以点击对应的某一列,然后鼠标拉到底,同样也能进行操作,步骤如下 其他的数据基本操作 我们同样地可以对数据进行排序,在我们点击到某一列的时候,会弹出如下的选项框..., 其中就包括了对数据进行排序的按钮,例如我们对gdp_cap这一列进行降序排序,步骤如下 我们还能够对数据集当中的每一列进行重命名,使用的是Rename这个选项按钮,步骤如下 那么如果是想要删除某一列的话...,对应的则是Delete这个选项按钮了,相当于是Pandas当中的drop方法 而当我们点击Describe这个按钮之后,会出现针对某一列的统计性分析,如下图所示 并且可以通过图表可视化的形式来更加直观地展现统计分析的最终结果...setting按钮,点击之后再出现的下拉框中我们可以对界面设置是否为“深色模式”,以及对语言也可以进行设置 界面的宽度和高度我们要是觉得不行也能进行调整 分组统计 我们点击图表上方工具栏中的Actions
例如,选取DataFrame中“A”列大于0且“B”列小于0的行数据: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn...& B<@B') 聚合和分组 在数据分析过程中,聚合和分组是非常重要的操作。...例如,根据某一列的值来计算另一列的均值或总和。Pandas提供了多种聚合和分组的函数,如下所示。...2.1 groupby() groupby()函数可以根据某一列或多列将数据分组,例如: df.groupby('A').sum() 2.2 聚合函数 Pandas提供了丰富的聚合函数,包括求和、均值、...='C', 'D') 其中id_vars表示要保留的列,value_vars表示要转换的列。
从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...删除包含缺失值的行: df.dropna(axis = 0) 删除包含缺失值的列: df.dropna(axis = 1) 如果一列里缺失值超过10%,则删除该列: df.dropna(thresh...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...'].head() 年龄是一段连续值,如果我们想对它进行分组变成分类特征,比如(60,老人),可以用cut方法实现: import sys...可以看到新增了一列ageGroup,用以展示年龄分组: df['ageGroup'].head() 6.
转换作用于单个表(从Python角度来看,表只是一个Pandas 数据框),它通过一个或多个现有的列创建新特征。 例如,如果我们有如下客户表。...例如,如果我们有另一个包含客户贷款的信息表格,其中每个客户可能有多笔贷款,我们可以计算每个客户的贷款的平均值,最大值和最小值等统计数据。...此过程包括通过客户信息对贷款表进行分组,计算聚合,然后将结果数据合并到客户数据中。以下是我们如何使用Pandas库在Python中执行此操作。...每个实体都必须有一个索引,该索引是一个包含所有唯一元素的列。也就是说,索引中的每个值只能出现在表中一次。 clients数据框中的索引是client_id,因为每个客户在此数据框中只有一行。...一个例子是通过client_id对贷款loan表进行分组,并找到每个客户的最大贷款额。 转换:在单个表上对一列或多列执行的操作。一个例子是在一个表中取两个列之间的差异或取一列的绝对值。
领取专属 10元无门槛券
手把手带您无忧上云