首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 处理缺失值

    面对缺失值三种处理方法: option 1: 去掉含有缺失值的样本(行) option 2:将含有缺失值的列(特征向量)去掉 option 3:将缺失值用某些值填充(0,平均值,中值等) 对于dropna...axis=1: 删除包含缺失值的列 how: 与axis配合使用 how=‘any’ :只要有缺失值出现,就删除该行货列 how=‘all’: 所有的值都缺失,才删除行或列 thresh: axis...中至少有thresh个非缺失值,否则删除 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行 subset: list 在哪些列中查看是否有缺失值 inplace...method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None 在列上操作 ffill / pad: 使用前一个值来填充缺失值...backfill / bfill :使用后一个值来填充缺失值 limit 填充的缺失值个数限制。

    1.8K20

    Excel查找值技巧,根据两个值来查找相对应的值

    如下图1所示,要根据代码和编号两个值来查找对应的数量。 图1 有三种解决方案来实现目的: 1.连接关键值。此时,可以使用辅助列,也可以使用数组公式。 2.SUMIFS函数。...此时,返回的值必须是数字。 3.OFFSET函数。此时,如示例中的代码列排好序才能实现。...图3 使用SUMIFS函数 如果返回的值是数字,则可以使用SUMIFS函数。...SUMIFS($C$2:$C$15,$A$2:$A$15,F2,$B$2:$B$15,F3) 图4 使用OFFSET函数 可以使用OFFSET函数返回需要查找的单元格区域,然后使用查找函数来查找相对应的值。...将上述两个返回值作为OFFSET函数的参数,返回要查找的单元格区域,作为VLOOKUP函数的参数,最后返回相对应的值。 当然,这样的公式也需要数值排序如示例一样。

    2.9K40

    如何根据特定值找到IDOC

    有时候,我们会碰到这样的问题:系统中有大量的IDOC存在,我们手头有一些已知的信息,例如采购订单号,清账凭证号码,销售订单号,或者任何IDOC中可能包含的关键信息,根据这些信息,如何能找到对应的IDOC...下面,我将用一个例子来展示,在SAP S/4HANA系统中,如何根据采购订单号,找到对应的IDOC。 第一步:确定你要用什么字段来查找IDOC 在这个例子里,我用的是采购订单号。...在下列IDOC清单中(WE02),我希望能根据采购订单号#4500000138,在全部的message type为ORDERS的IDOC中,找到对应的那一条。...步骤三:根据采购订单号,找到对应的IDOC 你知道这个IDOC是Outbound IDOC,你可以用鼠标选用“Outbound IDocs”,然后点击“List specific segment”按钮,...然后系统会把所有E1EDK02的值都列出来。在列表中,点击搜索按钮,输入采购订单号。 之后,我们能看到系统找到了两条记录。 由于有两条记录,我们还需要找到类型为ORDERS的那一条。

    1.8K31

    Pandas数据清洗:缺失值处理

    而其中,缺失值的处理又是数据清洗中最常见的问题之一。本文将从基础概念出发,逐步深入探讨Pandas库中处理缺失值的方法,包括常见的问题、报错及其解决方案。1....在Pandas中,缺失值通常用NaN(Not a Number)表示。2. 检测缺失值在处理缺失值之前,首先需要检测数据集中哪些位置存在缺失值。...Pandas提供了几种方法来检测缺失值:isnull():返回一个布尔值的DataFrame,表示每个元素是否为缺失值。...Pandas提供了interpolate()方法来实现插值法填充缺失值。...总结本文介绍了Pandas中处理缺失值的基本方法,包括检测缺失值、删除缺失值、填充缺失值和插值法填充缺失值。同时,我们还讨论了在处理缺失值时可能遇到的一些常见问题及其解决方案。

    20610

    pandas中的缺失值处理

    pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...缺失值的判断 为了针对缺失值进行操作,常常需要先判断是否有缺失值的存在,通过isna和notna两个函数可以快速判断,用法如下 >>> a = pd.Series([1, 2, None, 3]) >>...df.dropna(axis=0) A B 0 1.0 1.0 >>> df.dropna(axis=1) Empty DataFrame Columns: [] Index: [0, 1, 2] pandas...同时,通过简单上述几种简单的缺失值函数,可以方便地对缺失值进行相关操作。

    2.6K10

    Java 根据占位符名称替换值

    在Java开发中,我们经常需要根据一些模板、格式字符串等动态替换一些变量的值。为了方便处理这些情况,Java提供了字符串格式化功能,可以使用占位符将变量嵌入到字符串中,并在运行时进行替换。...本文将介绍Java中根据占位符名称替换值的方法。...因此,可以考虑使用占位符名称,使替换值能够更清晰地与占位符进行匹配。使用占位符名称为了使用占位符名称进行字符串替换,我们需要引入Java的MessageFormat类。...在实际开发中,可以根据需求选择最合适的方法。...总结本文介绍了Java中根据占位符名称替换值的方法。它不仅可以使代码更清晰、易读、易维护,还可以提高开发效率。在实际开发中,可以根据具体需求选择最合适的方法。

    4.3K10
    领券