首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas用groupby分解列的速度非常慢

Pandas 的 groupby 操作在处理大规模数据集时可能会遇到性能瓶颈,导致速度变慢。以下是一些基础概念、优势、类型、应用场景以及优化建议:

基础概念

groupby 是 Pandas 中用于将数据分组的方法。它允许你对数据进行聚合、转换等操作。基本语法如下:

代码语言:txt
复制
df.groupby(column_name).agg(function)

优势

  1. 灵活性:可以对数据进行多种复杂的聚合操作。
  2. 易用性:语法简洁,易于理解和实现。
  3. 功能强大:支持多种内置函数和自定义函数。

类型

  • 简单分组:按单一列分组。
  • 多重分组:按多列分组。
  • 层次化索引:生成多层次的索引结构。

应用场景

  • 数据分析:统计各组的平均值、总和等。
  • 数据清洗:对不同组的数据进行不同的处理。
  • 数据转换:将数据转换为更适合分析的形式。

性能问题及原因

  1. 数据量过大:当数据集非常大时,内存和计算资源可能成为瓶颈。
  2. 复杂操作:复杂的聚合函数或多次分组操作会增加计算时间。
  3. 索引问题:未优化的索引可能导致查询效率低下。

优化建议

  1. 增加内存:确保有足够的内存来处理数据集。
  2. 优化索引:使用适当的索引可以显著提高查询速度。
  3. 优化索引:使用适当的索引可以显著提高查询速度。
  4. 分块处理:对于超大数据集,可以考虑分块读取和处理。
  5. 分块处理:对于超大数据集,可以考虑分块读取和处理。
  6. 使用 Dask:Dask 是一个并行计算库,可以处理比内存更大的数据集。
  7. 使用 Dask:Dask 是一个并行计算库,可以处理比内存更大的数据集。
  8. 避免链式操作:链式操作可能会导致性能下降,尽量使用单行代码完成操作。
  9. 避免链式操作:链式操作可能会导致性能下降,尽量使用单行代码完成操作。

示例代码

以下是一个简单的示例,展示如何使用 groupby 进行分组和聚合:

代码语言:txt
复制
import pandas as pd

# 创建示例数据
data = {
    'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
    'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
    'C': [1, 2, 3, 4, 5, 6, 7, 8]
}
df = pd.DataFrame(data)

# 使用 groupby 进行分组和聚合
result = df.groupby('A').agg({'C': 'sum'}).reset_index()
print(result)

通过以上方法,可以有效提升 groupby 操作的性能。如果问题依然存在,建议进一步分析具体的数据处理逻辑和数据结构,以便找到更针对性的优化方案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

用Pandas和SQLite提升超大数据的读取速度

作者:Itamar Turner-Trauring 翻译:老齐 与本文相关的图书推荐:《跟老齐学Python:数据分析》 ---- 让我们想象,你有一个非常大的数据集,以至于读入内存之后会导致溢出,但是你想将它的一部分用...Pandas进行处理,如果你在某个时间点只是想加载这个数据集的一部分,可以使用分块方法。...现在,Pandas的DataFrame对象中有索引,但是必须要将数据读入内存,然而CSV文件太大了,内存无法容纳,于是,你想到,可以只载入你关注的记录。 这就是第一个方法,进行分块。...SQLite将数据保存在独立的文件中,你必须管理一个SQLite数据文件,而不是CSV文件了。 用SQLite存储数据 下面演示一下如何用Pandas操作SQLite: 1....,从而允许我们使用这些列快速搜索数据库。

5.1K11

比pandas更快的库

pandas为什么慢 由于底层的numpy数组数据结构和C代码,pandas库已经相当快了。然而,默认情况下,所有Python代码都在单个CPU线程上运行,这使得pandas运行慢。...三个比pandas更快的数据分析库 简要介绍以下三个能够快速运行的Python库: 1.polars:一个使用Apache Arrow列格式内存模型在Rust编程语言中实现的快速数据框架库。...2.modin在apply和concat函数中非常快,但在其他函数中非常慢。值得注意的是,在许多测试(merge、filter、groupby等)中,modin比Panda慢。...3.Datatable在进行简单的列计算时并不差,而且速度非常快。 从对更大数据集的测试中,还可以看到,在大多数测试中,polars的性能始终优于所有其他库。...虽然没有测试这四个库的每个方面,但所测试的操作在数据分析工作中非常常见。结果表明,用polars替换pandas可能会将Python程序的速度提高至少2-3倍。

1.5K30
  • 还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

    我们知道pandas的两个主要数据结构:dataframe和series,我们对数据的一些操作都是基于这两个数据结构的。但在实际的使用中,我们可能很多时候会感觉运行一些数据结构的操作会异常的慢。...一个操作慢几秒可能看不出来什么,但是一整个项目中很多个操作加起来会让整个开发工作效率变得很低。有的朋友抱怨pandas简直太慢了,其实对于pandas的一些操作也是有一定技巧的。...因此,如果正确使用pandas的话,它的运行速度应该是非常快的。 本篇将要介绍几种pandas中常用到的方法,对于这些方法使用存在哪些需要注意的问题,以及如何对它们进行速度提升。...我们仍然在使用某种形式的Python for循环,这意味着每个函数调用都是在Python中完成的,理想情况是它可以用Pandas内部架构中内置的更快的语言完成。...这里探讨的示例相当简单,但说明了Pandas功能的正确应用如何能够大大改进运行时和速度的代码可读性。

    3.5K10

    嫌pandas慢又不想改代码怎么办?来试试Modin

    之前和大家分享过一篇关于提速pandas的文章,主要是在pandas的具体操作用法上提出了一些改进,还在抱怨pandas运行速度慢?...DataFrame分区 分区模式沿着列和行分区,因为它在列数和支持的行数方面给Modin提供了灵活性和可伸缩性。 ? 系统架构 Modin被分成不同的层: Pandas API暴露在最顶层。...modin的标准架构 在Modin中实现pandas API pandas API是非常多的,这可能是它具有如此广泛的应用的原因。 ?...type(df) modin.pandas.dataframe.DataFrame 如果我们用head命令打印出前5行,它会像pandas一样呈现HTML表。 df.head() ?...df.groupby pandas groupby编写得非常好,速度非常快。但即便如此,modin仍然胜过pandas。

    1.1K30

    pandas:apply和transform方法的性能比较

    方法时,需要记得三点: 1、它只能对每一列进行计算,所以在groupby()之后,.transform()之前是要指定要操作的列,这点也与apply有很大的不同。...2、由于是只能对每一列计算,所以方法的通用性相比apply()就局限了很多,例如只能求列的最大/最小/均值/方差/分箱等操作 3、transform还有什么用呢?...2.6 结论 agg()+python内置方法的计算速度最快,其次是transform()+python内置方法。而 transform() 方法+自定义函数 的组合方法最慢,需要避免使用!...而下面两图中红框内容可观察发现:python自带的stats统计模块在pandas结构中的计算也非常慢,也需要避免使用! ? ? 3....可以看到,在260W的数据集上,多进程比单进程的计算速度可以提升约17%~61% 。 ?

    1.4K10

    数据科学的原理与技巧 三、处理表格数据

    我们将提出一个问题,将问题分解为大体步骤,然后使用pandas DataFrame将每个步骤转换为 Python 代码。...索引、切片和排序 让我们使用pandas来回答以下问题: 2016 年的五个最受欢迎的婴儿名字是? 拆分问题 我们可以将这个问题分解成以下更简单的表格操作: 分割出 2016 年的行。...总结 我们现在有了数据集中每个性别和年份的最受欢迎的婴儿名称,并学会了在pandas中表达以下操作: 操作 pandas 分组 df.groupby(label) 多列分组 df.groupby([label1..., label2]) 分组和聚合 df.groupby(label).agg(func) 透视 pd.pivot_table() 应用、字符串和绘图 在本节中,我们将回答这个问题: 我们可以用名字的最后一个字母来预测婴儿的性别吗...通过在pandas文档中查看绘图,我们了解到pandas将DataFrame的一行中的列绘制为一组条形,并将每列显示为不同颜色的条形。 这意味着letter_dist表的透视版本将具有正确的格式。

    4.6K10

    Pandas速查手册中文版

    对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。...它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。 如果你想学习Pandas,建议先看两个网站。...df.dropna(axis=1):删除所有包含空值的列 df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行 df.fillna(x):用x替换DataFrame对象中所有的空值...,后按col2降序排列数据 df.groupby(col):返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象 df.groupby...col1进行分组,并计算col2和col3的最大值的数据透视表 df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值 data.apply(np.mean):对

    12.2K92

    Pandas图鉴(三):DataFrames

    Pandas 给 NumPy 数组带来的两个关键特性是: 异质类型 —— 每一列都允许有自己的类型 索引 —— 提高指定列的查询速度 事实证明,这些功能足以使Pandas成为Excel和数据库的强大竞争者...Polars[2]是Pandas最近的转世(用Rust编写,因此速度更快,它不再使用NumPy的引擎,但语法却非常相似,所以学习 Pandas 后对学习 Polars 帮助非常大。...用drop删除行的速度出奇的慢,如果原始标签不是唯一的,就会导致错综复杂的bug。...通常最少的定制功能会产生最好的性能。因此,按照速度递增的顺序: 通过g.apply()实现多列范围的自定义函数 通过g.agg()实现单列范围的自定义函数(支持用Cython或Numba加速)。...在上面的例子中,所有的值都是存在的,但它不是必须的: 对数值进行分组,然后对结果进行透视的做法非常普遍,以至于groupby和pivot已经被捆绑在一起,成为一个专门的函数(和一个相应的DataFrame

    44420

    一行代码将Pandas加速4倍

    作者:George Seif 编译:ronghuaiyang 导读 虽然Pandas的功能非常强大,但是对于大数据集来说,确实是很慢的。...Pandas是处理 Python 数据的首选库。它易于使用,并且在处理不同类型和大小的数据时非常灵活。它有大量的函数,使得操纵数据变得轻而易举。 ?...随着时间的推移,各种Python包的流行程度 但是有一个缺点:对于较大的数据集来说,panda“慢”。 默认情况下,panda 使用单个 CPU 内核作为单个进程执行其函数。...可以用*.mean()取每一列的平均值,用groupby对数据进行分组,用drop_duplicates()*删除所有重复项,或者使用其他任何内置的 pandas 函数。...这是一个应用 Modin 的绝佳机会,因为我们要多次重复一个非常简单的操作。

    2.6K10

    一行代码将Pandas加速4倍

    作者:George Seif 编译:ronghuaiyang 导读 虽然Pandas的功能非常强大,但是对于大数据集来说,确实是很慢的。...Pandas是处理 Python 数据的首选库。它易于使用,并且在处理不同类型和大小的数据时非常灵活。它有大量的函数,使得操纵数据变得轻而易举。 ?...随着时间的推移,各种Python包的流行程度 但是有一个缺点:对于较大的数据集来说,panda“慢”。 默认情况下,panda 使用单个 CPU 内核作为单个进程执行其函数。...可以用*.mean()取每一列的平均值,用groupby对数据进行分组,用drop_duplicates()*删除所有重复项,或者使用其他任何内置的 pandas 函数。...这是一个应用 Modin 的绝佳机会,因为我们要多次重复一个非常简单的操作。

    2.9K10

    利用 Python 实现 Excel 办公常用操作!

    本文用的主要是pandas,绘图用的库是plotly,实现的Excel的常用功能有: Python和Excel的交互 vlookup函数 数据透视表 绘图 以后如果发掘了更多Excel的功能,会回来继续更新和补充...如图所示为某单位所有员工基本信息的数据源表,在“2010年3月员工请假统计表”工作表中,当在A列输入员工工号时,如何实现对应员工的姓名、身份证号、部门、职务、入职日期等信息的自动录入?...的pivot_table的参数index/ columns/ values和Excel里的参数是对应上的(当然,我这话说了等于没说,数据透视表里不就是行/列/值吗还能有啥。。)...但是我个人还是更喜欢用groupby,因为它运算速度非常快。我在打kaggle比赛的时候,有一张表是贷款人的行为信息,大概有2700万行,用groupby算了几个聚合函数,几秒钟就完成了。...不过pandas的官方文档说了,groupby之后用apply速度非常慢,aggregate内部做过优化,所以很快,apply是没有优化的,所以建议有问题先想想别的方法,实在不行的时候再用apply。

    2.6K20

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...跟踪信用卡消费的简单工具 现在几乎每个人都有信用卡,使用非常方便,只需轻触或轻扫即可完成交易。然而,在每个付款期结束时,你有没有想过“我到底把这些钱花在哪里了?”。...parse_dates参数,pandas可能会认为该列是文本数据。...“Fee手续费/Interest利息费”类别看起来可疑,也想看看是否可以减少一些“Entertainment娱乐”费用,所以我们将这些费用分解为每月的数字。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。

    4.7K50

    多快好省地使用pandas分析大型数据集

    Python大数据分析 1 简介 pandas虽然是个非常流行的数据分析利器,但很多朋友在使用pandas处理较大规模的数据集的时候经常会反映pandas运算“慢”,且内存开销“大”。...图1 本文就将以真实数据集和运存16G的普通笔记本电脑为例,演示如何运用一系列策略实现多快好省地用pandas分析大型数据集。...54.6%,这是个很大的进步,按照这个方法我们尝试着读入全量数据并查看其info()信息: 图5 可以看到随着我们对数据精度的优化,数据集所占内存有了非常可观的降低,使得我们开展进一步的数据分析更加顺畅...「只读取需要的列」 如果我们的分析过程并不需要用到原数据集中的所有列,那么就没必要全读进来,利用usecols参数来指定需要读入的字段名称: raw = pd.read_csv('train.csv',....groupby(['app', 'os']) .agg({'ip': 'count'}) .compute() # 激活计算图 ) 并且dask会非常智能地调度系统资源,使得我们可以轻松跑满所有

    1.4K40

    媲美Pandas?Python的Datatable包怎么用?

    【导读】工具包 datatable 的功能特征与 Pandas 非常类似,但更侧重于速度以及对大数据的支持。...前言 data.table 是 R 中一个非常通用和高性能的包,使用简单、方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Bioconductor...整个文件共包含226万行和145列数据,数据量规模非常适合演示 datatable 包的功能。...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable...▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。

    7.2K10

    媲美Pandas?Python的Datatable包怎么用?

    作者 | Parul Pandey 译者 | linstancy 责编 | Jane 【导读】工具包 datatable 的功能特征与 Pandas 非常类似,但更侧重于速度以及对大数据的支持。...前言 data.table 是 R 中一个非常通用和高性能的包,使用简单、方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Bioconductor...整个文件共包含226万行和145列数据,数据量规模非常适合演示 datatable 包的功能。...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable...▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。

    6.7K30

    Python和Excel的完美结合:常用操作汇总(案例详析)

    用python做数据分析,离不开著名的pandas包,经过了很多版本的迭代优化,pandas现在的生态圈已经相当完整了,官网还给出了它和其他分析工具的对比: 本文用的主要也是pandas,绘图用的库是...,并同时算出利润 通过Excel的数据透视表的操作最终实现了下面这样的效果: python实现:对于这样的分组的任务,首先想到的就是pandas的groupby,代码写起来也简单,思路就是把刚才Excel...的pivot_table的参数index/ columns/ values和Excel里的参数是对应上的(当然,我这话说了等于没说,数据透视表里不就是行/列/值吗还能有啥。)...但是我个人还是更喜欢用groupby,因为它运算速度非常快。我在打kaggle比赛的时候,有一张表是贷款人的行为信息,大概有2700万行,用groupby算了几个聚合函数,几秒钟就完成了。...不过pandas的官方文档说了,groupby之后用apply速度非常慢,aggregate内部做过优化,所以很快,apply是没有优化的,所以建议有问题先想想别的方法,实在不行的时候再用apply。

    1.1K20

    开发ETL为什么很多人用R不用Python

    打破R慢的印象,ETL效率显著优于Python,堪比spark,clickhouse 2....测试数据长这样: 废话不多说,先看部分结果的截图吧。 上图截取的是复杂的groupby问题中对于5G与50G数据各ETL工具的用时情况,项目运行服务器的内存为128G,核数40。...1.读取 data.table用时89秒,内存峰值消耗7G modin.pandas用时58秒,内存峰值消耗25G 本测试所用的是modin[ray],似乎modin.pandas一直有内存管理的问题,...(id4, id5)] modin用时174秒,由于modin暂不支持多列的groupby,实际上还是用的pandas的groupby x.groupby([‘id4’,‘id5’]).agg({‘v3...’: [‘median’,‘std’]}) UserWarning: DataFrame.groupby_on_multiple_columns defaulting to pandas implementation

    1.9K30

    【技巧】Pandas常见的性能优化方法

    但Pandas在使用上有一些技巧和需要注意的地方,如果你没有合适的使用,那么Pandas可能运行速度非常慢。本文将整理一些Pandas使用技巧,主要是用来节约内存和提高代码速度。...建议1:尽可能的避免读取原始csv,使用hdf、feather或h5py格式文件加快文件读取; 在某些定长的字符数据的读取情况下,read_csv读取速度比codecs.readlines慢很多倍。...3 apply、transform和agg时尽量使用内置函数 在很多情况下会遇到groupby之后做一些统计值计算,而如果用内置函数的写法会快很多。 ?...在阿里云安全赛中我是用joblib库写的并行特征提取,比单核特征提取快60倍。 建议4:如果能并行就并行,用第三方库或者自己手写多核计算。...Pandas官方也写了一篇性能优化的文章,非常值得阅读: https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html

    1.3K60
    领券