大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。...Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?
数据透视表将每一列数据作为输入,输出将数据不断细分成多个维度累计信息的二维数据表。...在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。...数据基本情况 groupby数据透视表 使用 pandas.DataFrame.groupby 函数,其原理如下图所示。...默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列名或其他分组键,出现在结果透视表的列 aggfunc 聚合函数或函数列表,默认为'mean'...crosstab 是交叉表,是一种特殊的数据透视表默认是计算分组频率的特殊透视表(默认的聚合函数是统计行列组合出现的次数)。
小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 源于林胖发出的一道基础题: ? ?...然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。...但这操作导致列多了一个级别,需要删除: df.agg({"a": lambda x: x, "b": pd.Series}).droplevel(0, axis=1) 结果: ?...melt实现逆透视 说起逆透视我个人首先想到了melt方法,然后才想到melt方法实现的本质用到了stack方法。
5-1数据修改 1-数据修改|列名 将原 df 列名 Unnamed: 2、Unnamed: 3、Unnamed: 4 修改为 金牌数、银牌数、铜牌数 df.rename(columns={'Unnamed...[i%2==1 for i in df.shape[1]]] 24-筛选列|条件(列名) df.iloc[:,df.columns.str.endswith('数')] 25-筛选列|组合(行号+列名)...(行号+列号) 提取第 4 行,第 4 列的值 df.iloc[3,3] 40 - 筛选值|组合(行号+列名) 提取行索引为 4 ,列名为 金牌数 的值 df.at[4,'金牌数'] 41 - 筛选值|...pd.merge(left, right, on='k', suffixes=['_l', '_r']) join - 组合 25 - join|左对齐 合并 left 和 right,并按照...(right,on=['key1','key2']) 8-金融数据与时间处理 8-1pandas中的时间操作 1-时间生成|当前时间 使用pandas获取当前时间 pd.Timestamp('now')
本篇博文主要是对之前的几篇关于pandas使用技巧的小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定的数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...透视表使用 ---- 创建数据 S型数据 import numpy as np import pandas as pd pd.Series([1, 3, 5, np.nan, 6, 89]) #...用于连接的列名,默认是相同的列名 left_on \right_on 左侧、右侧DF中用作连接键的列 sort 根据连接键对合并后的数据进行排序,默认是T suffixes 重复列名,直接指定后缀,用元组的形式...并按照平均年龄从大到小排序?...values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性
准备 在本秘籍中,我们使用groupby方法执行聚合,以创建具有行和列多重索引的数据帧,然后对其进行处理,以使索引为单个级别,并且列名具有描述性。...index参数采用一列(或多列),该列将不会被透视,并且其唯一值将放置在索引中。columns参数采用一列(或多列),该列将被透视,并且其唯一值将作为列名称。...数据透视表只是分组列的所有唯一组合的交集。 步骤 3 通过使用unstack方法将最里面的索引级别转换为列名来完成复制。...请注意,当我们拆开数据帧时,pandas 会保留原始的列名(在这里,它只是一个列Value),并创建一个以旧列名为上层的多重索引。...在此秘籍中,仅连接了两个数据帧,但是任何数量的 Pandas 对象都可以工作。 当我们垂直连接时,数据帧通过其列名称对齐。
选取一个或以组列 对于由GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。 6. 通过字典或Series进行分组。 7....根据索引级别分组:层次化索引数据集最方便的地方就在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编码或者名称即可。 8....10 apply:一般性的“拆分-应用-合并” 最一般化的GroupBy方法是apply,它会将待处理的对象拆分成多个片段,然后对个片段调用传入的函数,最后尝试将各片段组合到一起。...11 分位数和桶分析 pandas有一些可以根据指定面元或样本分位数将数据拆分成多块的工具(比如cut和qcut)。...12 透视表(pivot table)是各种电子表格程序和其他数据分析软件中一种常见的数据汇总工具。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...values:需要汇总计算的列,可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,作为结果...pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。
什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...values:需要汇总计算的列,可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,作为结果...总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。
Python与算法社区 第 446 篇原创,干货满满 三步加星标 01 02 03 三步加星标 你好,我是 zhenguo 今晚小技巧第五篇,做数据分析数据透视必不可少,数据透视让我们更加了解数据的规律...Pandas 与透视相关的方法有 3 个,下面分别介绍使用它们的小技巧。...16 melt透视数据小技巧 melt 方法固定某列为一个维度,组合其他列名为另一个维度,实现宽表融化为长表: zip_code factory warehouse retail 0...factory,warehouse,retail 三个列名为一个维度,按照这种方法凑齐两个维度后,数据一定变长。...,因为组合多个列为1列,所以数据一定变长。
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。你可以把它想象成一个电子表格或SQL表,或者 Series 对象的字典。...16、透视表 透视表是pandas的一个强大的操作,大量的参数完全能满足你个性化的需求。 ? 17、处理缺失值 pandas对缺失值有多种处理办法,满足各类需求。 ?...20、更改列名(columns index) 更改列名我认为pandas并不是很方便,但我也没有想到一个好的方案。 ?
介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table。...数据 使用pandas中pivot_table的一个挑战是,你需要确保你理解你的数据,并清楚地知道你想通过透视表解决什么问题。...最简单的透视表必须有一个数据帧和一个索引。在本例中,我们将使用“Name(名字)”列作为我们的索引。 pd.pivot_table(df,index=["Name"]) 此外,你也可以有多个索引。...我一般的经验法则是,一旦你使用多个“grouby”,那么你需要评估此时使用透视表是否是一种好的选择。 高级透视表过滤 一旦你生成了需要的数据,那么数据将存在于数据帧中。...所以,你可以使用自定义的标准数据帧函数来对其进行过滤。
# 4–透视表 Pandas可以用来创建MS Excel风格的透视表。例如,在本例中一个关键列是“贷款数额”有缺失值。我们可以根据“性别”,“婚姻状况”和“自由职业”分组后的平均金额来替换。...# 7–合并数据帧 当我们需要对不同来源的信息进行合并时,合并数据帧变得很重要。假设对于不同物业类型,有不同的房屋均价(INR/平方米)。让我们定义这样一个数据帧: ? ?...现在,我们可以将原始数据帧和这些信息合并: ? ? 透视表验证了成功的合并操作。请注意,“value”在这里是无关紧要的,因为在这里我们只简单计数。...# 8–数据帧排序 Pandas允许在多列之上轻松排序。可以这样做: ? ? 注:Pandas的“排序”功能现在已不再推荐。我们用“sort_values”代替。...解决这些问题的一个好方法是创建一个包括列名和类型的CSV文件。这样,我们就可以定义一个函数来读取文件,并指定每一列的数据类型。
5.2、数据透视表用法 5.3、数据采样 5.4、数据求均值 ,方差等 5.5、数据求相关系数 6、数据存储 6.1、存储到Execl 6.2、存储到CSV...1、数据的生成与导入 说明: 利用Pandas里面的read系列可直接读取相应格式的数据文件。...例如更改列名: 数据合并: Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。...合并方式: inner outer left right 组合方式: left_on + right_on left_on + right_index left_index + right_on left_index...5、数据汇总与统计量计算 关于groupby和数据透视表请阅读:这些祝福和干货比那几块钱的红包重要的多! 相关系数结果: 6、数据存储
5.2、数据透视表用法 5.3、数据采样 5.4、数据求均值 ,方差等 5.5、数据求相关系数 6、数据存储 6.1、存储到Execl 6.2、存储到CSV...说明: 利用Pandas里面的read系列可直接读取相应格式的数据文件。...例:查看前五行数据 ? 3、数据的清洗和预处理等步骤 对清洗完的数据进行预处理整理以便后期的统计和分析工作。 ? 例如更改列名: ?...数据合并: Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。 ?...关于groupby和数据透视表请阅读:这些祝福和干货比那几块钱的红包重要的多! ? 相关系数结果: ? 6、数据存储 ?
数据透视表(Pivot Table)是常用的数据汇总工具,可以通过控制数据的排列灵活地进行数据分析,进而挖掘出数据中最有价值的信息。掌握数据透视表,已经成为数据分析从业者必备的一项技能。...在python中我们可以通过pandas.pivot_table函数来实现数据透视表的功能。...# 加载数据 import numpy as np import pandas as pd import seaborn as sns df = sns.load_dataset('titanic')...仔细观察透视表发现,与上面【3】中的"添加一个列级索引",在分组聚合效果上是一样的,都是将每个性别组中的成员再次按照客票级别划分为3个小组。...保存透视表 数据分析的劳动成果最后当然要保存下来了,我们一般将透视表保存为excel格式的文件,如果需要保存多个透视表,可以添加到多个sheet中进行保存。 save_file = ".
如果你是excel用户,那么可能已经熟悉数据透视表的概念。Pandas 数据透视表的工作方式与 Excel 等电子表格工具中的数据透视表非常相似。...数据透视表函数接受一个df,一些参数详细说明了您希望数据采用的形状,并且输出是以数据透视表的形式汇总数据。 在下面的文章中,我将通过代码示例简要介绍 Pandas 数据透视表工具。...用于创建上述数据透视表的代码如下所示。在 pivot_table 函数中,我们指定要汇总的df,然后是值、索引和列的列名。此外,我们指定了我们想要使用的计算类型,我们以计算平均值为例。...数据透视表可与 Pandas 绘图功能结合使用,以创建有用的数据可视化。...它们今天仍在广泛使用,因为它们是分析数据的强大工具。Pandas 数据透视表将这个工具从电子表格中带到了 python 用户的手中。 本指南简要介绍了 Pandas 中数据透视表工具的使用。
我们将首先将数据加载到熊猫数据帧中,然后使用 Plotly 创建人口金字塔。 使用情节表达 Plotly Express 是 Plotly 的高级 API,可以轻松创建多种类型的绘图,包括人口金字塔。...barmode="relative", range_x=[-1, 1]) # Show the plot fig.show() 解释 我们首先导入库,包括用于创建图的 plotly.express 和用于将数据加载到数据帧中的...接下来,我们使用 read_csv() 函数将人口数据从 CSV 文件加载到 pandas 数据帧中。...数据使用 pd.read_csv 方法加载到熊猫数据帧中。 使用 go 为男性和女性群体创建两个条形图轨迹。条形方法,分别具有计数和年龄组的 x 和 y 值。...我们探索了两种不同的方法来实现这一目标,一种使用熊猫数据透视表,另一种使用 Plotly 图形对象。我们讨论了每种方法的优缺点,并详细介绍了每种方法中使用的代码。
该数据集以Pandas数据帧的形式加载。...可以展开小图标查看组件,组件指的是列名。 Darts--绘图 如何使用 Darts 绘制曲线? 绘图语法与 Pandas 中的一样简单。...数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。字典将包含两个键:字段名.START 和字段名.TARGET。...该库可用于执行单变量时间序列建模,需要使用Pandas数据框架,其中列名为['ds', 'y']。 这里加载了一个 Pandas 数据框 "bike" 来训练一个 Prophet 模型。...以下是一个使用Pandas数据帧来训练NeuralProphet模型的示例。
) # 列名 # 显示创建的DataFrame print(df) Letter Number 0 A 1 1 B 2 2 C...九、分组(Grouping)聚合 “group by” 指的是涵盖下列⼀项或多项步骤的处理流程: 分割:按条件把数据分割成多组; 应⽤:为每组单独应⽤函数; 组合:将处理结果组合成⼀个数据结构。...十、数据透视表应用 透视表是⼀种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。...透视表是一种强大的数据分析工具,它可以快速地对大量数据进行汇总、分析和呈现。 ...'上海', '北京', '上海'], '销售额': [100, 200, 150, 250]} df = pd.DataFrame(data) # 使用pivot_table方法创建数据透视表
领取专属 10元无门槛券
手把手带您无忧上云