返回每两个「短语」 phrases[i] 和 phrases[j](i != j)进行「前后拼接」得到的「新短语」。 注意,两个「短语」拼接时的顺序也很重要,我们需要同时考虑这两个「短语」。...示例 1: 输入:phrases = ["writing code","code rocks"] 输出:["writing code rocks"] 示例 2: 输入:phrases = ["mission...= ["a","b","a"] 输出:["a"] 提示: 1 phrases.length <= 100 1 phrases[i].length <= 100 来源:力扣(LeetCode...(); ++i) { idx1 = phrases[i].find_first_of(' ');//第一个空格 idx2 = phrases[i].find_last_of...= string::npos) back[phrases[i].substr(idx2+1)].push_back(i); else back[phrases[i
(tokens: List[str], stoplist: List[str] = None) -> List[str]: """ Merge tokens into phrases,...(' '.join(current_phrase)) return all_phrases def get_cooccurrence_graph(phrases: List[str]) ->...: Set[str] = set() ranked_phrases: List[Tuple[str, float]] = [] for phrase in phrases:...ranked_phrases.sort(key=lambda item: (-item[1], item[0])) return ranked_phrases def rake_text(text...(cooccurrence) ranked_result: List[Tuple[str, float]] = get_ranked_phrases(phrases, degrees=degrees
在这里,我把代码贴出来,纪念一下我"逝去"的代码~ (function() { var i18n = { lang: 'en_US', phrases: {}, tr: function...(word) { return i18n.phrases[i18n.lang][word]; }, setLang: function(lang = 'en_US') {...status: ${xhr.status}`); } var phrases = JSON.parse(xhr.responseText); i18n.phrases = phrases;
Such phrases like “loves”, “doesn’t love”, “loves sincerely”, “doubts”, “wants to date”, “laughs” are...Phrases are pronounced from the first to the last....The list of phrases is cyclic, so after the last phrase you should pronounce the first one....two integer numbers N and M (1 phrases...Phrases consist only of latin letters and their lengths are between 1 and 100.
ins_phrases_arr 数组:增加内容的数组,每个元素包含三个字段:hash_tag,content,pos。...del_phrases_arr 数组:删除内容的数组,每个元素包含三个字段:hash_tag,content,pos。...total_cn_num":0, "total_non_cn_num":0, "ins_char_num":0, "del_char_num":0, "ins_count":0, "del_count":0, "ins_phrases_arr...":[{"hash_tag":"ht_ins_1","content":"2","pos":0}], "del_phrases_arr":[{"hash_tag":"ht_del_0","content
例如:For example: >>> phrases = ['俄罗斯克里姆林宫', '邀请金正恩访俄', '最高司令官金正恩', '朝方转交普京', '举行会谈'] 2...key_phrases = ckpe_obj.extract_keyphrase(text) print(key_phrases) print(ckpe_obj.extract_keyphrase.....' >>> key_phrases = jio.keyphrase.extract_keyphrase(text) >>> print(key_phrases) >>> print(jio.keyphrase.extract_keyphrase...word_dict = {'局': 1, '国务院': 1, '检察院': 1, '法院': 1} key_phrases = ckpe_obj.extract_keyphrase(text, top_k...=-1, specified_words=word_dict, remove_phrases_list=['麻将局']
支持 ‘default’, ‘tone2’ load_phrases_dict pypinyin.load_phrases_dict(phrases_dict, style='default') 载入用户自定义的词语拼音库...参数 说明 phrases_dict (dict) 词语拼音库。...比如: {u"阿爸": [[u"ā"], [u"bà"]]} style phrases_dict 参数值的拼音库风格.
支持正则表达式: fuck kill phrases...> asshole phrases> kick....substitution=node.substitution.text() def sensitive=[node.words.word*.text().join('|'), node.phrases.phrase
__init__() def _extract_key_phrases(self, text, topK=10): """ 提取关键短语...(self, key_phrases): """ 基于关键短语生成摘要句子 Args: key_phrases (list..._extract_key_phrases(text, topK=8) # 提取关键句子 key_sentences = self...._generate_summary_from_phrases(key_phrases) summary_parts.append(phrase_summary)..._generate_summary_from_phrases(key_phrases)实现要点:利用TF-IDF提取文本中的关键词通过关键词密度选择重要句子结合关键词和关键句子生成新的摘要内容控制摘要长度以满足用户需求这种方法的优点是摘要更加流畅自然
In [5]: from gensim.models import Phrases# 向文档中添加双字母组和三字母组(仅出现10次或以上的文档)。...bigram = Phrases(docs, min_count=10)trigram = Phrases(bigram[docs]) for idx in range(len(docs)):for token.../opt/conda/lib/python3.6/site-packages/gensim/models/phrases.py:316: UserWarning: For a faster implementation..., use the gensim.models.phrases.Phraser classwarnings.warn("For a faster implementation, use the gensim.models.phrases.Phraser
', 'JJ'), ('programming', 'NN'), ('language', 'NN')] Noun Phrase Extraction(名词短语列表) Similarly, noun phrases...are accessed through the noun_phrases property....注意:只提取名词短语 >>> wiki.noun_phrases WordList(['python']) Sentiment Analysis(情感分析) 返回一个元组 Sentiment(polarity.... >>> wiki.noun_phrases.count('python') #短语频次 1 Translation and Language Detection(翻译及语言检测语言) New in...blob.noun_phrases # WordList(['titular threat', 'blob', # 'ultimate
Citations // List items // Block quotes // Code blocks // Tables // Horizontal rules // Standalone lines or phrases...// Sentences or phrases // Quoted text, parenthetical phrases, or bracketed content // Paragraphs //...Standalone lines or phrases (including single-line blocks and HTML elements, with length constraints)...Sentences or phrases ending with punctuation (including ellipsis and Unicode punctuation) `(?:(?...Quoted text, parenthetical phrases, or bracketed content (with length constraints) "(?
. + object’ leads to 20×21×20 = 8400 然后对其进行过滤,得到 hundreds of meaningful phrases,用这些语言描述去搜索图像,根据图像数量再过滤一下...最终得到 59 valid phrases IDW has 41,421 images and descriptions ?
In [5]:from gensim.models import Phrases# 向文档中添加双字母组和三字母组(仅出现10次或以上的文档)。...bigram = Phrases(docs, min_count=10)trigram = Phrases(bigram\[docs\])for idx in range(len(docs)): .../opt/conda/lib/python3.6/site-packages/gensim/models/phrases.py:316: UserWarning: For a faster implementation..., use the gensim.models.phrases.Phraser class warnings.warn("For a faster implementation, use the gensim.models.phrases.Phraser
这里可以使用load_phrases_dict 方法。...from pypinyin import lazy_pinyin, load_phrases_dict personalized_dict = {'黄同学': [['huáng'], ['tòng'...], ['xué']]} load_phrases_dict(personalized_dict) lazy_pinyin("黄同学",style=Style.TONE) 结果如下: ?
phrases = [ "Amanda baked cookies and will bring Jerry some tomorrow....collection.add( documents=phrases, metadatas=metadatas, ids=ids ) 我们可以快速检查插入的文档是否生成了嵌入。...import chromadb phrases = [ "Amanda baked cookies and will bring Jerry some tomorrow....collection = chroma_client.get_or_create_collection(name="tns_tutorial") collection.add( documents=phrases
say-module="zh" sound-prefix="$${sounds_dir}/zh/cn/link" tts-engine="cepstral" tts-voice="callie"> phrases...-- IVR and custom phrases go here --> phrases> 到这里用到的Voicemail部分就结束了。
appShortcuts: [AppShortcut] { AppShortcut( intent: CoffeeIntent(), phrases...systemImageName: "magnifyingglass" ) AppShortcut( intent: CoffeeIntent(), phrases..."square.and.pencil" ) AppShortcut( intent: CoffeeIntent(), phrases
Tendency of placing phrases which indicate time at the beginning of a sentence When U is taken as the...In this paper, in this study Two errors occur when these phrases are used. The first is overuse....In some papers written by Chinese, these phrases can occur as much as twice per page....In papers written by native English writers these phrases are reserved for primarily two uses In the...The two phrases are interchanged. In this paper, IDEAS was used to ….
interview with Recode earlier " "this week.") doc = nlp(text) # Analyze syntax print("Noun phrases...]) print("Verbs:", [token.lemma_ for token in doc if token.pos_ == "VERB"]) # Find named entities, phrases...blob.noun_phrases # WordList(['titular threat', 'blob', # 'ultimate