首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python一行代码搞定炫酷可视化,你需要了解一下Cufflinks

虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...可以把它形容为"pandas like visualization"。 毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。...,我总结一下,它的格式大致是这样的: ?...或者是将某个区域标记出来,可以使用hspan类型。 df.iplot(hspan=[(-1,1),(2,5)]) ? 又或者是竖条的区域,可以用vspan类型。...如果对iplot中的参数不熟练,直接输入以下代码即可查询。 help(df.iplot) 总结 怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。

92640

我们误会cufflinks,虽然定量不准但却是很好的可视化工具

虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...可以把它形容为"pandas like visualization"。 毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。...,我总结一下,它的格式大致是这样的: ?...或者是将某个区域标记出来,可以使用hspan类型。 df.iplot(hspan=[(-1,1),(2,5)]) ? 又或者是竖条的区域,可以用vspan类型。...如果对iplot中的参数不熟练,直接输入以下代码即可查询。 help(df.iplot) 总结 怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。

1.4K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    安利个一行代码的Python可视化神器!

    虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...可以把它形容为"pandas like visualization" 毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。...,我总结一下,它的格式大致是这样的: DataFrame:代表pandas的数据框; Figure:代表我们上面看到的可绘制图形,比如bar、box、histogram等等; iplot:代表绘制方法...使用过plotly的朋友可能知道,如果使用online模式,那么生成的图形是有限制的。所以,我们这里先设置为offline模式,这样就避免了出现次数限制问题。...help(df.iplot) 总结 怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。如果是常规图形,一行即可实现。

    45630

    Python要上天啊!一行代码就可以搞定炫酷的数据可视化!

    虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...可以把它形容为"pandas like visualization"。 毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。...,我总结一下,它的格式大致是这样的: ?...或者是将某个区域标记出来,可以使用hspan类型。 df.iplot(hspan=[(-1,1),(2,5)]) ? 又或者是竖条的区域,可以用vspan类型。...如果对iplot中的参数不熟练,直接输入以下代码即可查询。 help(df.iplot) 总结 怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。

    1K30

    推荐收藏 | Python一行代码搞定炫酷可视化,Cufflinks了解一下

    虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...可以把它形容为"pandas like visualization"。 毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。...,我总结一下,它的格式大致是这样的: ?...或者是将某个区域标记出来,可以使用hspan类型。 df.iplot(hspan=[(-1,1),(2,5)]) ? 又或者是竖条的区域,可以用vspan类型。...如果对iplot中的参数不熟练,直接输入以下代码即可查询。 help(df.iplot) 06 总结 怎么样,是不是非常快捷方便?

    86411

    Python一行代码搞定炫酷可视化,你需要了解一下Cufflinks

    虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...可以把它形容为"pandas like visualization"。 毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。...,我总结一下,它的格式大致是这样的: DataFrame:代表pandas的数据框; Figure:代表我们上面看到的可绘制图形,比如bar、box、histogram等等; iplot:代表绘制方法...04 cufflinks实例 我们通过几个实例感受一下上面的使用方法。使用过plotly的朋友可能知道,如果使用online模式,那么生成的图形是有限制的。...help(df.iplot) 05 总结 怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。如果是常规图形,一行即可实现。

    1.2K20

    用Python进行数据分析的10个小技巧

    如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。...Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。...df.iplot() df.iplot() vs df.plot() 右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。...查找并解决错误 交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。...结论 在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

    1.7K30

    收藏 | 10个可以快速用Python进行数据分析的小技巧

    如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。...Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。...df.iplot() ? ? df.iplot() vs df.plot() 右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。...查找并解决错误 交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。这将打开一个交互式调试环境,它能直接定位到发生异常的位置。...结论 在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

    1.4K50

    10个小技巧:快速用Python进行数据分析

    如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。...Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。...df.iplot() ? ? df.iplot() vs df.plot() 右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。...查找并解决错误 交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。这将打开一个交互式调试环境,它能直接定位到发生异常的位置。...结论 在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码! End.

    1.3K21

    10个可以快速用Python进行数据分析的小技巧

    如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。...Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。...df.iplot() ? ? df.iplot() vs df.plot() 右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。...查找并解决错误 交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。...结论 在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

    1.8K20

    数据可视化,还在使用Matplotlib?Plotly,是时候表演真正的技术了(附代码)

    它指的是我们倾向于持续将时间和资源投入到失去的原因中,因为我们已经花了很多时间去追求无用的事情。沉没成本谬论适用于当我们花了很多成本也不会起作用的项目或工作。...比如,当存在效率更高,互动性更强的选择时,我们依然继续使用Matplotlib。 在过去的几个月里,我意识到我使用Matplotlib的唯一原因是我花费了数百小时去学习它复杂的语法。...带注释的散点图 对于使用第三个变量来上色的双变量散点图,我们可以使用如下命令: df.iplot( x='read_time', y='read_ratio', # Specify...更进一步的工作(详见notebook-https://w.url.cn/s/AS8rPTo ),我们甚至可以在一个图表上放置四个变量(不建议-https://w.url.cn/s/ALRC02Y)!...然后,你可以在线发布图,以便任何人都可以通过链接找到它。 下面是我在Chart Studio中发布的两个图表: ? ? 上面提到的一切,并不是该绘图库的全部功能!

    2.5K20

    Python5个数据可视化工具

    只需一行代码,我生成了下面这个散点图。您可以根据需要自定义它。请记住指定模式标记,否则您将获得一些线条。 ? 请注意,随着数据的增加,plotly会开始卡滞。...使用plotly的Python库,您可以使用DataFrame的系列和索引来描述图形,但是使用Cufflinks可以直接绘制它。...with plotly df.iplot(kind= scatter ) ? with cufflinks Cufflinks使得图表绘制更加容易。...您可以将它与python一起使用,也可以与R一起使用。最初,它可以与JavaScript一起使用,因为JS具有广泛的功能并且需要大量的学习和经验,但是如果你是JS专业人员则不需要犹豫。...使用 r2d3 ,您可以将数据从R绑定到D3可视化。使用 r2d3 创建的D3可视化就像RStudio,R Markdown文档和Shiny应用程序中的R图一样工作。

    4.4K21

    Plotly,是时候表演真正的技术了

    它指的是我们倾向于持续将时间和资源投入到失去的原因中,因为我们已经花了很多时间去追求无用的事情。沉没成本谬论适用于当我们花了很多成本也不会起作用的项目或工作。...比如,当存在效率更高,互动性更强的选择时,我们依然继续使用Matplotlib。 在过去的几个月里,我意识到我使用Matplotlib的唯一原因是我花费了数百小时去学习它复杂的语法。...▲使用plotly+cufflinks制作的交互式直方图 对于那些习惯使用Matplotlib的人来说,我们所要做的就是添加一个字母(使用iplot而不是plot),我们就可以得到一个更好看的交互式图表...▲带注释的散点图 对于使用第三个变量来上色的双变量散点图,我们可以使用如下命令: df.iplot( x='read_time', y='read_ratio', # Specify...然后,你可以在线发布图,以便任何人都可以通过链接找到它。 下面是我在Chart Studio中发布的两个图表: ? ? 上面提到的一切,并不是该绘图库的全部功能!

    1.9K20

    Python奇淫技巧,5个数据可视化工具

    只需一行代码,我生成了下面这个散点图。您可以根据需要自定义它。请记住指定模式标记,否则您将获得一些线条。 请注意,随着数据的增加,plotly会开始卡滞。...使用plotly的Python库,您可以使用DataFrame的系列和索引来描述图形,但是使用Cufflinks可以直接绘制它。... col in df.columns]) with plotly df.iplot(kind= scatter ) with cufflinks Cufflinks...您可以将它与python一起使用,也可以与R一起使用。最初,它可以与JavaScript一起使用,因为JS具有广泛的功能并且需要大量的学习和经验,但是如果你是JS专业人员则不需要犹豫。...使用 r2d3 ,您可以将数据从R绑定到D3可视化。使用 r2d3 创建的D3可视化就像RStudio,R Markdown文档和Shiny应用程序中的R图一样工作。

    4K30

    Python奇淫技巧,5个炫酷的数据可视化工具

    只需一行代码,我生成了下面这个散点图。您可以根据需要自定义它。请记住指定模式标记,否则您将获得一些线条。 ? 请注意,随着数据的增加,plotly会开始卡滞。...使用plotly的Python库,您可以使用DataFrame的系列和索引来描述图形,但是使用Cufflinks可以直接绘制它。...with plotly df.iplot(kind= scatter ) ? with cufflinks Cufflinks使得图表绘制更加容易。...您可以将它与python一起使用,也可以与R一起使用。最初,它可以与JavaScript一起使用,因为JS具有广泛的功能并且需要大量的学习和经验,但是如果你是JS专业人员则不需要犹豫。...使用 r2d3 ,您可以将数据从R绑定到D3可视化。使用 r2d3 创建的D3可视化就像RStudio,R Markdown文档和Shiny应用程序中的R图一样工作。

    8.1K74

    Python奇淫技巧,5个数据可视化工具

    只需一行代码,我生成了下面这个散点图。您可以根据需要自定义它。请记住指定模式标记,否则您将获得一些线条。 ? 请注意,随着数据的增加,plotly会开始卡滞。...使用plotly的Python库,您可以使用DataFrame的系列和索引来描述图形,但是使用Cufflinks可以直接绘制它。...with plotly df.iplot(kind= scatter ) ? with cufflinks Cufflinks使得图表绘制更加容易。...您可以将它与python一起使用,也可以与R一起使用。最初,它可以与JavaScript一起使用,因为JS具有广泛的功能并且需要大量的学习和经验,但是如果你是JS专业人员则不需要犹豫。...使用 r2d3 ,您可以将数据从R绑定到D3可视化。使用 r2d3 创建的D3可视化就像RStudio,R Markdown文档和Shiny应用程序中的R图一样工作。

    4.1K30

    Python奇淫技巧,5个数据可视化工具

    只需一行代码,我生成了下面这个散点图。您可以根据需要自定义它。请记住指定模式标记,否则您将获得一些线条。 ? 请注意,随着数据的增加,plotly会开始卡滞。...使用plotly的Python库,您可以使用DataFrame的系列和索引来描述图形,但是使用Cufflinks可以直接绘制它。...with plotly df.iplot(kind= scatter ) ? with cufflinks Cufflinks使得图表绘制更加容易。...您可以将它与python一起使用,也可以与R一起使用。最初,它可以与JavaScript一起使用,因为JS具有广泛的功能并且需要大量的学习和经验,但是如果你是JS专业人员则不需要犹豫。...使用 r2d3 ,您可以将数据从R绑定到D3可视化。使用 r2d3 创建的D3可视化就像RStudio,R Markdown文档和Shiny应用程序中的R图一样工作。

    3.5K20

    数据分析从业者必看!10 个加速 python 数据分析的简易小技巧

    所以,下面是我最喜欢的一些技巧,我以本文的形式一起使用和编译它们。其中,有些可能是相当有名的,有些可能是新的,但我相信下次您从事数据分析项目时,它们会非常有用。...相反,也不能排除使用 pandas.dataframe.plot()函数绘制图表的易用性。如果我们不需要对代码进行重大修改,就可以像绘制 pandas plots 那样绘出交互式图表呢?...Cufflinks 将 plotly 的力量与 pandas 的灵活性结合起来,便于绘制。现在让我们来看看如何安装这个库并让它在 pandas 中工作。...df.iplot() ? df.iplot() vs df.plot() 右视图显示的是静态图表,左图表是交互式的,更详细地说,所有这一切在语法上都没有重大变化。...但是,如果您在运行同一脚本(如 python)时添加了一个额外的-i hello.py,那么它提供了更多的优势。让我们看看怎么做。 首先,只要程序不结束,python 就不会退出解释器。

    2K30

    独家 | 10 个简单小窍门带你提高Python数据分析速度(附代码)

    所以,我在这里介绍下自己编程时最喜欢使用的一些提示和技巧,在这篇文章中汇总起来呈现给大家。有些可能是大家熟悉的,而有些可能是新鲜的,我相信它们会为你下一次处理数据分析的项目时提供便利。 1....而且,使用pandas.DataFrame.plot()函数绘制图表也并不容易。如果我们想要在没有对代码进行重大修改的情况下用pandas绘制交互式图表要怎么办?...Cufflinks资源包将功能强大的plotly和灵活易用的pandas结合,非常便于绘图。现在我们来看看怎么安装和在pandas中使用这个资源包。...代码示例: 安装 Python2.x的版本中,使用pip安装plotly和cufflink: pip install plotly # Plotly is a pre-requisite before...world_readable=True) 下面来看一下泰坦尼克数据集所展现的魔力: df.iplot() ?

    1.1K20
    领券