我们将首先将数据加载到熊猫数据帧中,然后使用 Plotly 创建人口金字塔。 使用情节表达 Plotly Express 是 Plotly 的高级 API,可以轻松创建多种类型的绘图,包括人口金字塔。...plotly.express 和用于将数据加载到数据帧中的 pandas。...接下来,我们使用 read_csv() 函数将人口数据从 CSV 文件加载到 pandas 数据帧中。...数据使用 pd.read_csv 方法加载到熊猫数据帧中。 使用 go 为男性和女性群体创建两个条形图轨迹。条形方法,分别具有计数和年龄组的 x 和 y 值。...输出 结论 在本文中,我们学习了如何在 Python 中使用 Plotly 创建人口金字塔。我们探索了两种不同的方法来实现这一目标,一种使用熊猫数据透视表,另一种使用 Plotly 图形对象。
这就是:可视分析,即将信息提炼为知识,起到“观物至知”对作用,便于决策者从复杂、大量、多维度的数据中快速挖掘有效信息。...本文总结介绍了多种可视化图及其适合使用场景,并同时展示使用了常用的绘图包(plotly、 seaborn 和 matplotlib )绘制这些图的代码。 条形图 条形图是用矩形条显示分类数据的图形。...这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。...堆叠条形图用于显示数据集子组。...这是堆叠条形图的类型,其中每个堆叠条形显示其离散值占总值的百分比。
Plotly(plotly.py)建立在Plotly JavaScript库(plotly.js)的基础上,可用于创建基于Web的数据可视化效果,这些可视化效果可以在Jupyter笔记本或Web应用程序中使用...Plotly提供了40多种独特的图表类型,例如散点图,直方图,折线图,条形图,饼图,误差线,箱形图,多轴,迷你图,树状图,3-D图表等。Plotly还提供了等高线图,其中在其他数据可视化库中并不常见。...Ggplot可以使用高级功能创建数据可视化,例如条形图,饼图,直方图,散点图,错误图等。 API。可在单个可视化中添加不同类型的数据可视化组件或层。...Ggplot也与熊猫紧密相连,因此最好将数据保留在DataFrames中。 Altair Altair是Python中的统计数据可视化库。...Altair用最少的编码创建漂亮的图表数据可视化,例如条形图,饼图,直方图,散点图,误差图,功率谱,干图等。
柱状图 我们知道,在excel插入图表的时候,柱状图一般可选堆叠柱状图和簇状柱状图。...medals_long # 堆叠柱状图 (使用长表数据,这种数据excel无法直接绘制堆叠图) import plotly.express as px long_df = px.data.medals_long...宽表 # 堆叠柱状图 (使用长表数据,这种数据excel可以直接绘制堆叠图) import plotly.express as px wide_df = px.data.medals_wide() fig...数据点着色 2. 条形图 条形图其实就是柱状图转个90度,横着显示呗。所以,本质上是一样的,唯一的区别:在 Bar 函数中设置orientation='h',其余参数与柱状图相同。...# 在plotly绘图中,条形图与柱状图唯一的区别:在 Bar 函数中设置orientation='h',其余参数与柱状图相同 import plotly.express as px data = px.data.gapminder
说起动态图表,最火的莫过于动态条形图了。 在B站上搜索「数据可视化」这个关键词,可以看到很多与动态条形图相关的视频。 好多视频都达到了上百万的播放量,属实厉害。 ?...但是作为一名Pythoner,当然是想要研究一下如何用Python来实现。 之前也看过大佬们通过Matplotlib、Plotly、Pyecharts实现类似的功能,就是代码量有点多,看的脑瓜疼。...实现的动态条形图。...最后小F选择将项目从GitHub上下载下来,再进行安装。 ? 下载压缩包,将解压后的文件夹放置在项目的venv/lib/python3.7/site-packages目录下。...使用电视剧余欢水人物的「百度指数」数据。 文件具体内容如下。 ? 经过数据透视表处理后,得到与该库格式相同的数据。 ? 想用自己的数据来做动态条形图,5行代码即可搞定。
本教程将解释如何使用 Python 在 Plotly 图形上手动添加图例文本大小和颜色。在本教程结束时,您将能够在强大的 Python 数据可视化包 Plotly 的帮助下创建交互式图形和图表。...但是,并非所有情况都可以通过 Plotly 的默认图例设置来适应。本文将讨论如何在 Python 中手动将图例颜色和字体大小应用于 Plotly 图形。...Plotly Express 库创建散点图,其中包含来自熊猫数据帧 'df' 的 x 和 y 数据。...例 在此示例中,我们通过定义包含三个键的数据字典来创建自己的数据帧:“考试 1 分数”、“考试 2 分数”和“性别”。随机整数和字符串值使用 NumPy 分配给这些键。然后我们使用了 pd。...DataFrame() 方法,用于从数据字典创建数据帧。 然后使用 px.scatter() 方法创建散点图。数据帧中的“考试 1 分数”和“考试 2 分数”列分别用作 x 轴和 y 轴。
02 可视化绘制思维导图 绘制可视化图形,非常重要的一点就是了解什么时候需要绘制怎样的图,对于多种可视化图形的绘制方向总结如下图: 03 比较类图 创建示例数据如下: import pandas as...: 条形图 条形图用于比较不同数据之间的差异,条形图的宽度表示数值的大小,可以对单一的变量或者多组变量进行比较。...# 实现简单的条形图 import plotly.express as px # orientation='h' 用户表示绘制条形图 fig = px.bar(data, x='score', y='...堆叠面积图可以用来比较在一个区域内的多个变量,适合展示整体数据的变化趋势。...堆叠面积图和普通的面积图的区别是每个数据值序列映射的区域起点都是上一个数据值序列顶端。
那么这15座新一线城市 近20年来的GDP变化趋势如何? 人口竞争力如何排座次? 房价又是怎样的? 今天我们就来用数据全面解读这15座城市。...这次我们使用Python的动态可视化库plotly,对这15座城市从2000年到2019年这20年的GDP、人口以及房价数据进行了可视化。下面就让我们来一起看看吧!...使用官网: https://plotly.com/python/plotly-express/ 绘图的步骤也非常简单: 直接使用px调用某个绘图方法,会自动创建画布,并画出图形。...接下来我们演示使用plotly.express绘制动态条形图和散点图。 首先绘制一个动态条形图,用于展示15座城市随时间走势的GDP变化趋势,调用bar的方法即可。...:列名,控制动画帧 # 条形图 fig2 = px.bar(df_all, x='城市', y='GDP', color='城市', text='GDP', title='新一线城市近
堆叠式条形图 ? 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。 树形结构图 ?...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。 热图 ?...箱形图又称为「盒须图」或「箱线图」,能方便显示数字数据组的四分位数,可以垂直或水平的形式出现。 从盒子两端延伸出来的线条称为「晶须」(whiskers),用来表示上、下四分位数以外的变量。
堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。...箱形图 箱形图又称为「盒须图」或「箱线图」,能方便显示数字数据组的四分位数,可以垂直或水平的形式出现。 从盒子两端延伸出来的线条称为「晶须」(whiskers),用来表示上、下四分位数以外的变量。
11、条形图 条形图 (Bar Chart) 也称为「棒形图」或「柱形图」,采用水平或垂直条形(柱形图)来比较不同类别的离散数值。 图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。...13、堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...图表从螺旋形的中心点开始往外发展。螺旋图十分多变,可使用条形、线条或数据点,沿着螺旋路径显示。 螺旋图很适合用来显示大型数据集,通常显示长时间段内的数据趋势,因此能有效显示周期性的模式。
数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...常见图表类型 在介绍完图表元素设置后,我们演示一下常见的几种图表类型。 柱状图 柱状图主要用于数据的对比,通过柱形的高低来表达数据的大小。...) 柱状图多子图 # 柱状图多子图 df.plot.bar(subplots=True, rot=0) 条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上
今天给大家分享一篇可视化干货,介绍的是功能强大的开源 Python 绘图库 Plotly,教你如何用超简单的(甚至只要一行!)代码,绘制出更棒的图表。...Plotly 的 Python 库是可以免费使用的,在离线模式可以创建数量不限的图表,在线模式因为用到了 Plotly 的共享服务,只能生成并分享 25 张图表。...如果你想绘制堆叠柱状图,也只需要这样: 对 pandas 数据表进行简单的处理,并生成条形图: 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数: 交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。...在选择一款绘图库的时候,你最需要的几个功能有: 快速探索数据所需的一行代码图表 拆分/研究数据所需的交互式元素 当需要时可以深入细节信息的选项 最终展示前能轻易进行定制 从现在看来,要用 Python
绘图引擎 通过backend可以指定不同的绘图引擎,目前默认是matplotlib,还支持bokeh、plotly、Altair等等。当然,在使用新的引擎前需要先安装对应的库。...# 绘图引擎 plotly df.plot.bar(backend='plotly', barmode='group', height=500, # 图表高度...条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh(figsize=(6,8)) ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() ? 单个面积图 df.a.plot.area() ?
一、前言二、初阶图形2.1 基本条形图2.2 水平柱状图2.3 带图例的堆叠柱状图2.4 带图例的分组柱状图2.5 ggplot作图2.6 plotly作图三、进阶图形3.1 水平柱状图3.2 显著性柱状图...3.3 堆积百分比柱状图3.4 分组柱状图四、讨论一、前言柱状图又称条形图,在统计分析中的使用频率最高,也是众多小白入门R最早绘制的可视化图形。...") #可自行更换颜色图片2.2 水平柱状图barplot(values,horiz = TRUE) #翻转图片2.3 带图例的堆叠柱状图#构建数据data 的,有交互性的可视化R包,可以绘制点图、线图、条形图、气泡图、桑基图、甘特图、树状图等。...图片还有很多刚入门或者准备入门生信的同学,特出此系列巩固和提供一些入门帮助。关注公众号「生信初学者」回复【barplot】领取示例数据和代码
Python 绘图库 Plotly,教你如何用超简单的(甚至只要一行!)...Plotly 的 Python 库是可以免费使用的,在离线模式可以创建数量不限的图表,在线模式因为用到了 Plotly 的共享服务,只能生成并分享 25 张图表。...对 pandas 数据表进行简单的处理,并生成条形图: ? ? 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起。...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数: ? ?...在选择一款绘图库的时候,你最需要的几个功能有: 快速探索数据所需的一行代码图表 拆分/研究数据所需的交互式元素 当需要时可以深入细节信息的选项 最终展示前能轻易进行定制 从现在看来,要用 Python
Python 绘图库 Plotly,教你如何用超简单的(甚至只要一行!)...Plotly 的 Python 库是可以免费使用的,在离线模式可以创建数量不限的图表,在线模式因为用到了 Plotly 的共享服务,只能生成并分享 25 张图表。...如果你想绘制堆叠柱状图,也只需要这样: 对 pandas 数据表进行简单的处理,并生成条形图: 就像上面展示的那样,我们可以将 plotly + cufflinks 和 pandas 的能力整合在一起...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数: 交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。...在选择一款绘图库的时候,你最需要的几个功能有: 快速探索数据所需的一行代码图表 拆分/研究数据所需的交互式元素 当需要时可以深入细节信息的选项 最终展示前能轻易进行定制 从现在看来,要用 Python
Plotly库提供了丰富的功能和灵活的接口,使得创建各种类型的交互式图形变得简单而直观。本文将介绍如何使用Plotly库来创建交互式图形,并提供一些代码实例来演示其强大的功能。...创建交互式线图除了散点图之外,Plotly还支持创建交互式线图。下面我们来展示如何使用Plotly创建一个简单的交互式线图,并添加一些交互功能。...下面我们来展示如何使用Plotly创建一个简单的交互式条形图,并添加一些交互功能。...创建交互式热力图除了散点图、线图和条形图之外,Plotly还支持创建交互式热力图。下面我们来展示如何使用Plotly创建一个简单的交互式热力图,并添加一些交互功能。...总结本文介绍了如何利用Python的Plotly库进行交互式图形可视化。首先,我们学习了如何安装Plotly库,并使用基本的示例代码创建了散点图、线图、条形图和热力图。
除了条形图之外,我们还可以使用点图来进行可视化。这个点图是把点放到数量相对应的位置上来进行展示的。 ? 如果对于有多组类别的计数。我们可以使用分组或者堆叠的条形图来进行展示。...由于条形图可以分成水平也垂直的,所以也就分垂直和水平条形图了。饼图强调各个部分的总和并且可以突出显示简单的区分。但是每一部分之间的比较的话,并排的条形图可能更好一些。...堆叠的条形图对于每一部分的比较不是很容易区分,但是在比较多组比例的时候很有用。 ? 如果要进行多组比较的时候,这个时候饼图的空间往往就不够了。这个时候如果分组比较少的话,分组的条形图可以使用的。...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...对于平滑的线图,误差条可以使用置信范围来表示。 ? 文章推荐 《数据可视化基础》第三章:图形颜色如何选择 《数据可视化基础》第二章:坐标轴 《数据可视化基础》第一章:把数据放到图表上
领取专属 10元无门槛券
手把手带您无忧上云