首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

原来使用 Pandas 绘制图表也这么惊艳

: 正如我们在图中看到的,title 参数为绘图添加了一个标题,而 ylabel 为绘图的 y 轴设置了一个标签。...该图表可能包括特定类别的计数或任何定义的值,并且条形的长度对应于它们所代表的值。 在下面的示例中,我们将根据每月平均股价创建一个条形图,来比较每个公司在特定月份与其他公司的平均股价。...字符串值分配给 kind 参数来创建水平条形图: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据...直方图 直方图是一种表示数值数据分布的条形图,其中 x 轴表示 bin 范围,而 y 轴表示某个区间内的数据频率。...像这样: df.plot(kind='scatter', x='MSFT', y='AAPL', figsize=(9,6), color='Green') Output: 正如我们在上图中看到的,

4.6K50

科研绘图你值得注意的14个点 (2)

在接下来的三个图表中,有两个是可以接受的,但有一个却犯了数据可视化的大忌。你能发现问题所在吗? 在点状图和线形图中,数据值是通过在x轴和y轴上的位置来表示的。...这种表示方法同样适用于其他基于位置的图表,比如箱形图。而在条形图中,数据值是通过条形与x轴的距离,也就是条形的长度来表示的。...但如果我们想用长度来展示数据,为什么不直接将环状图展开,制作成堆叠条形图呢?在堆叠条形图中,条形并排展示,这样跨组比较就变得容易多了。 11....忽视堆叠条形图的重新排序 堆叠条形图在展示比例数据时非常有用,常用于展示社区结构、人口结构或混合分析等。这种视觉展示方式涉及到一系列样本,每个样本都包含多个类别的成员。...由于堆叠条的特性,上层条的误差条和点需要向上移动,这使得对误差条和点的y轴的解释变得不直观。 最后,如果可视化的主要目的是展示均值的分离和围绕均值的分布,那么第三个图表是更好的选择。

8010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    比 matplotlib 效率高十倍的数据可视化神器!

    Plotly简要概述 plotly Python 包是一个构建在 plotly.js 上的开源库,而后者又是构建在 d3.js 上的。...整个堆叠顺序是cufflinks>plotly>plotly.js>d3.js,意味着我们同时获得了 Python 的编程高效性和d3强大的图形交互能力。...通过一点 pandas 处理,我们还可以制作一个条形图: #重采样获得每月的均值 e Views and Reads') df2 = df[['view','reads','published_date...我们在一行代码里完成了很多不同的事情: - 自动获得了格式友好的时间序列作为x轴 - 添加一个次坐标轴(第二y轴),因为上图中的两个变量的值范围不同。...- 添加文章的标题到每个数据点中(鼠标放上去可以显示文章名和变量值) 如果要从图表上了解更多的信息,我们还可以很容易地添加文本注释: ?

    1.8K60

    《数据可视化基础》第四章:可视化图形推荐

    同时也可以把两个类别映射到X和Y轴上,这样就得到了热图来进行展示了。 ? 另外,对于多组别的数目的展示的话,如果是想要展示不同交集之间的数目可以使用venn图和upset图。 ?...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...4 x-y 相关性 当我们想显示两个连续性变量的变化的时候,可以使用散点图来进行可视化。如果我们有三个连续性变量,则可以将一个映射到点大小上,从而创建散点图的一种变体,称为气泡图。...对于成对的数据,沿x和y轴的变量以相同单位测量,通常添加一条表示x = y的线通常会有所帮助。 ? 对于大量的点,常规的散点图可能会由于点过多,就容易看不清趋势。...此外,我们可以根据数据为地图中的区域着色,从而显示不同区域中的数据值。这样的图被称为choropleth。

    2.4K30

    Pandas数据可视化

    也可以折算成比例, 计算加利福尼亚葡萄酒占总数的百分比 : 条形图(柱状图)非常灵活: 高度可以代表任何东西,只要它是数字即可 每个条形可以代表任何东西,只要它是一个类别即可。...  直方图看起来很像条形图, 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间...'] x='price', y='points’) 调整图形大小,字体大小,由于pandas的绘图功能是对Matplotlib绘图功能的封装...points',figsize=(14,8),fontsize = 16) 修改x轴 y轴标签字体   上图显示了价格和评分之间有一定的相关性:也就是说,价格较高的葡萄酒通常得分更高。...api添加x坐标: 该图中的数据可以和散点图中的数据进行比较,但是hexplot能展示的信息更多 从hexplot中,可以看到《葡萄酒杂志》(Wine Magazine)评论的葡萄酒瓶大多数是87.5分

    12610

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。 ?

    2.4K60

    5个快速而简单的数据可视化方法和Python代码

    我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...在' barplot() '函数中,' xdata '表示x轴上的标记,' ydata '表示y轴上的条高。误差条是以每个栏为中心的一条额外的线,用来显示标准差。 分组条形图允许我们比较多个分类变量。...然后我们循环遍历每一组,对于每一组,我们在x轴上画出每一个刻度的横杠,每一组也用颜色进行编码。 堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots...Matplotlib函数' boxplot() '为' ydata '的每一列或序列' ydata '中的每个向量绘制一个箱线图,因此,“xdata”中的每个值对应于“y_data”中的列/向量。

    2.1K10

    手把手教你用plotly绘制excel中常见的16种图表(上)

    条形图 条形图其实就是柱状图转个90度,横着显示呗。所以,本质上是一样的,唯一的区别:在 Bar 函数中设置orientation='h',其余参数与柱状图相同。...# 在plotly绘图中,条形图与柱状图唯一的区别:在 Bar 函数中设置orientation='h',其余参数与柱状图相同 import plotly.express as px data = px.data.gapminder...饼图与圆环图 我们在用excel绘制饼图的时候,可以选择既定配色方案,还可以自定义每个色块的颜色。用plotly绘制的时候,这些自定义操作也是支持的。...散点图 散点图是x和y均为数字列表情况下的坐标点图。...x轴和y轴均是列表的形式: # x轴和y轴均是列表的形式 import plotly.express as px fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1

    3.9K20

    5 种快速易用的 Python Matplotlib 数据可视化方法

    常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。

    2K40

    图表(Chart & Graph)你真的用对了吗?

    这种图表类型主要用于展示数据的所有组成部分,例如各省份的数据合在一起组成全国数据。 有以下几种图表类型,展示数据的组成: 饼状图 堆叠条形图 堆叠柱形图 面积图 瀑布图 3. ...这种图形由三个数据集组成,两个Y轴数据,一个X轴数据。主要用于显示两个Y轴随X轴变化时的相关性。 设计双轴图的最佳做法: 使用左侧的y轴作为主要变量 ,因为大脑自然倾向于先看向左。...6)堆叠条形图 这种图表用于比较多个不同的数据集,并显示每个被比较的数据集的组成。 设计堆叠条形图的最佳做法: 最适用于说明部分和整体的关系。 使用对比色,会使对比更加清晰。...10)瀑布图 瀑布图用于显示初始值如何受到中间值(正或负)的影响,并产生最终值,主要用于展示数据的组成。 设计瀑布图的最佳做法: 使用对比色来突出显示数据集中的差异。...设计漏斗图的最佳做法: 根据数据集的大小,准确的显示每个部分的大小。 漏斗图中使用渐变色调中的对比色。 12)子弹图 子弹图用于和标尺做对比,以便显示目标的进展程度。

    2.3K10

    开发 | 用数据说话,R语言有哪七种可视化应用?

    Chart") 堆叠条形图 堆叠条形图是柱状图的一个高级版本,可以将分类变量组合进行分析。...超市数据的例子中,如果我们想要知道不同分类商品的折扣店数量,包含折扣店种类和折扣店区域,堆叠条形图就是做这种分析最为有效的图表分析方法。...下面是一个简单的画堆叠条形图的例子,使用的是R中的ggplot()函数。...图中,黑色的点为离值群。离值群的检测和剔除是数据挖掘中很重要的环节。 下面是一个简单的画箱线图的例子,使用的是R中的ggplot()和geom_boxplot函数。...超市案例中,如果我们需要知道每个商品在每个折扣店的成本,如下图中所示,我们可以用三个变量Item_MRP,Outlet_Identifier和Item_type进行分析。

    2.3K110

    Python中最常用的 14 种数据可视化类型的概念与代码

    这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。..."size", y="mean_total_bill", hue="sex", data=df) 堆积条形图 堆叠条形图用于显示数据集子组。...这是堆叠条形图的类型,其中每个堆叠条形显示其离散值占总值的百分比。...这些点通常按其 x 轴值排序。这些点用直线段连接。折线图用于可视化一段时间内数据的趋势。 以下是折线图中按年计算的加拿大预期寿命的说明。...它用于处理来自较大数据集的不同数据组。它的每个折线图都向下阴影到 x 轴。它让每一组彼此堆叠。

    9.6K20

    数据可视化设计指南

    零(当一个以上的数据类别时) *基线值是y轴上的数值起始值。...颜色用于表示地图中的数据值大小。 颜色突出显示某些关键数据 ? 颜色用于突出显示散点图中的特定数据。 聚焦关键数据 如果很少使用颜色,则可以突出显示重点区域。...ICON同时补充了色彩的含义。 X、Y轴数值标签 带数值标签的轴的作用是清晰地显示相应图示数据的范围和比例。例如,折线图X轴和Y轴显示一系列数值标签。 ? 条形图Y轴基准线起始值应始终从零开始。...考虑完全删除X、Y轴将视觉焦点集中在数据上。可以将数据直接放在其对应的图表元素上。 条形图Y轴基准线的起始值 条形图基准线起始值应从(y轴的起始值)为零开始。...从零开始的条形图 ? 禁止。 该基线起始于20%,容易引起误解。 X、Y轴上的数值文本 Y轴上的数值文本的使用应有助于在图表中反映最重要的数据洞察。

    6.1K31

    这些条形图的用法您都知道吗?

    :用于设置条形图的其他属性信息,如统一的边框色、填充色、透明度等; width:用于设置条形图的宽度,默认为0.9的比例; binwidth:该参数在条形图中已不再使用,但可以使用在绘制直方图的geom_histogram...(data = df, # 指定绘图数据 # 指定x轴和y轴的变量 mapping = aes(x = Province, y = GDP)) + # 绘制条形图...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。...双离散单数值的百分比堆叠条形图 # 明细数据--双离散单数值变量的百分比堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill...) + labs(x = '', y = 'Rate') ?

    5.6K10

    Vega的交互式数据可视化

    用Vega制作的条形图 分解这个图表: 数据(每个数据点的类别和数量) X轴,每个类别都被容纳(需要一个比例来说明每个类别应该放置) y轴,显示每个数据点的数量(需要一个比例来说明应该放置每个数量)...在此条形图中,使用Rect标记。需要一个给定的位置,宽度和高度。还需要指定应该使用哪些数据来构建标记("from"属性)。..."y": {"scale": "xscale", "band": 1} "y"每个rect 的属性将是band scale的范围带宽xscale。...在此条形图中,处理数据时放置元素: "encode": { "enter": { "x": {"scale": "xscale", "field": "category"}...在这种情况下,将使用rect标记中的数据,这样就可以获得每个矩形的中心并将文本放在中间。要访问"datum"在表达式中使用的数据点。

    3.6K21

    数据可视化:认识Matplotlib

    (): x.append(str(i)) #获得纵(y)坐标数据 y = series.values.tolist() ax = plt.bar(x, y, width=0.4) # 添加横坐标显示 plt.xticks...(x, x) # 在每个条形图上方显示数值 for a, b in zip(x, y): plt.text(a, b + 0.1, '%.0f' % b, ha='center', va='bottom...: 横坐标(序列) height:纵坐标(系列) width:条形图的宽度,默认是0.8,可以根据实际大小设置,以更加美观 bottom:用于绘制堆叠条形图,默认值为None align:x轴刻度标签的对齐方式...: x:饼图百分比数据 labels:设置饼图中各个部分的标签 autopct:设置百分比信息的字符串格式化方式,默认值为None,不显示百分比 shadow:设置饼图的阴影,使得看上去有立体感,默认值为...False startangle:设置饼图中第一个部分的起始角度 radius:设置饼图的半径,数值越大,饼图越大 counterclock:设置饼图的方向,默认为True,表示逆时针方向,值为False

    22120

    课后笔记:ggplot2优雅的显示WB结果

    ✦ 几何对象(Geometric objects, geoms)代表在图中实际看到的点、线、多边形等。...「stat:」 设置统计方法,有效值是count(默认值) 和 identity,其中,count表示条形的高度是变量的数量,不能设定y值。...identity表示条形的高度是变量的值;对于连续性变量使用bin,转换的结果使用变量density来表示。...「position:」 位置调整,有效值是stack、dodge和fill,默认值是stack(堆叠),是指两个条形图堆叠摆放,dodge是指两个条形图并行摆放,fill是指按照比例来堆叠条形图,每个条形图的高度都相等...「width:」 条形图的宽度,是个比值,默认值是0.9 「color:」 条形图的线条颜色 「fill:」 条形图的填充色 基本演示 读取ImagJ数据及转换 #读取ImageJ dat=read.csv

    2.5K20

    Python|Plotly数据可视化(代码+应用场景)

    # 实现简单的条形图 import plotly.express as px # orientation='h' 用户表示绘制条形图 fig = px.bar(data, x='score', y='...柱形图的高度表示数值的大小,也可以对单一的变量或者多组变量进行比较。 注:在使用条形图和柱形图时x和y的参数传入相反。...node用于给出基本的配置项: pad:图中空白分隔空隙的大小; thickness:图中节点的宽度(每个连接处的长方形); line:每个节点的边框线的颜色和粗细; label:每个节点的名字(包含一层...堆叠面积图和普通的面积图的区别是每个数据值序列映射的区域起点都是上一个数据值序列顶端。...,在瀑布图中,底部贴着坐标轴的条图表示阶段性统计值(汇总值),其余的表示增长或者减少(相对值)。

    3.1K20

    「R」ggplot2数据可视化

    几何对象是用以呈现数据的几何图形对象,如条形、线条和点。 图形属性是几何对象的视觉属性,如x坐标和y坐标、线条颜色、点的形状等。 数值的值和图形属性之间存在着某类映射。...也就是说,每个函数完成图中各个组件的相应功能,然后通过串联+号将其连接起来,形成一个完整的图形。...aes()函数的功能是指定每个变量扮演的角色(aes代表aesthetics,即如何用视觉形式呈现信息)。在这里,变量wt的值映射到x轴,mpg的值映射到y轴。...对条形图来说,'dodge'将分组条形图并排,'stacked'堆叠分组条形图,'fill'垂直地堆叠分组条形图并规范其高度相等。对于点来说,'jitter'减少点重叠。...对于每个声部身高范围上的得分分布,小提琴图展示了更多视觉线索。 接下来我们将使用几何函数创建广泛的图表类型。让我们从分组开始吧——在一个图中展示多个分组观察值。

    7.4K10
    领券