在报表系统中,我们通常会有这样的需求,就是由用户来决定报表中需要显示的数据,比如数据源中共有八列数据,用户可以自己选择在报表中显示哪些列,并且能够自动调整列的宽度,已铺满整个页面。...本文就讲解一下ActiveReports中该功能的实现方法。 第一步:设计包含所有列的报表模板,将数据源中的所有列先放置到报表设计界面,并设置你需要的列宽,最终界面如下: ?...第二步:在报表的后台代码中添加一个Columns的属性,用于接收用户选择的列,同时,在报表的ReportStart事件中添加以下代码: /// /// 用户选择的列名称...Location.X, cols[c].Location.Y); } else { // 设置需要显示的非第一列坐标...源码下载: 动态设置报表中的列数量以及列宽度
经常会看到这样的例子: 当你需要统计表中有多少数据的时候,会经常使用如下语句 SELECT COUNT(*) FROM demo_info; 由于聚集索引和非聚集索引中的记录是一一对应的,而非聚集索引记录中包含的列...(索引列+主键id)是少于聚集索引(所有列)记录的,所以同样数量的非聚集索引记录比聚集索引记录占用更少的存储空间。...如果我们使用非聚集索引执行上述查询,即统计一下非聚集索引uk_key2中共有多少条记录,是比直接统计聚集索引中的记录数节省很多I/O成本。所以优化器会决定使用非聚集索引uk_key2执行上述查询。...再看一下count(非索引列) explain select count(common_field) from demo_info 对于count(非索引列)来说,优化器选择全表扫描,说明只能在聚集索引的叶子结点顺序扫描...而对于count(非索引列)来说,优化器选择全表扫描,说明只能在聚集索引的叶子结点顺序扫描。
HBase表中,每个列族对应region中的一个store。默认情况下,只有一个region,当满足一定条件,region会进行分裂。...如果一个HBase表中设置过多的列族,则可能引起以下问题: 一个region中存有多个store,当region分裂时导致多个列族数据存在于多个region中,查询某一列族数据会涉及多个region导致查询效率低...(这一点在多个列族存储的数据不均匀时尤为明显) 多个列族则对应有多个store,那么Memstore也会很多,因为Memstore存于内存,会导致内存的消耗过大 HBase中的压缩和缓存flush是基于...region的,当一个列族出现压缩或缓存刷新时会引起其他列族做同样的操作,列族过多时会涉及大量的IO开销 所以,我们在设计HBase表的列族时,遵循以下几个主要原则,以减少文件的IO、寻址时间: 列族数量...,要尽可能的少 列族名字可读性好,但不能过长。
选择分布列 Citus 使用分布式表中的分布列将表行分配给分片。为每个表选择分布列是最重要的建模决策之一,因为它决定了数据如何跨节点分布。...如果正确选择了分布列,那么相关数据将在相同的物理节点上组合在一起,从而使查询快速并添加对所有 SQL 功能的支持。如果列选择不正确,系统将不必要地缓慢运行,并且无法支持跨节点的所有 SQL 功能。...不同值的数量限制了可以保存数据的分片数量以及可以处理数据的节点数量。在具有高基数的列中,最好另外选择那些经常用于 group-by 子句或作为 join 键的列。 选择分布均匀的列。...最佳实践 不要选择时间戳作为分布列。 选择不同的分布列。在多租户应用程序中,使用租户 ID,或在实时应用程序中使用实体 ID。 改为使用 PostgreSQL 表分区。...这使 Citus 可以利用集群中所有节点的处理能力以及每个节点上的单个核心的处理能力来进行每个查询。
excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2
有时候,一行数据中前面的数据值都是0,从某列开始就是大于0的数值,我们需要知道首先出现大于0的数值所在的单元格。...例如下图1所示,每行数据中非零值出现的位置不同,我们想知道非零值出现的单元格对应的列标题,即第3行中的数据值。 ?...图2 在公式中, MATCH(TRUE,B4:M40,0) 通过B4:M4与0值比较,得到一个TRUE/FALSE值的数组,其中第一个出现的TRUE值就是对应的非零值,MATCH函数返回其相对应的位置...MATCH函数的查找结果再加上1,是因为我们查找的单元格区域不是从列A开始,而是从列B开始的。...ADDRESS函数中的第一个参数值3代表标题行第3行,将3和MATCH函数返回的结果传递给ADDRESS函数返回非零值对应的标题行所在的单元格地址。
但是这个表的列是动态的,下次多了一列这个方法就不行了,又得重新搞一遍。 大海:那咱们去改这个步骤的公式吧。 小勤:怎么改?...大海:首先,我们要得到表的所有列的列名,可以用函数Table.ColumnNames,如下图所示: 小勤:嗯,这个函数也简单。但是,怎么再给每个列名多带一个空值呢?...小勤:那怎么把两列组合在一起呢? 大海:还记得List.Zip函数吗?我把它叫“拉链”函数(Zip其实就是拉链的意思)。 小勤:嗯!就是一一对应的把两个列表的数据“拉“在一起!我知道了!...大海:其实长公式就是这样一步步“凑”成的,另外,注意你“更改的类型”步骤里的列是固定的哦。 小勤:嗯,这个我知道。后面我再按需要去掉这个步骤或做其他修改就是了。...而且,其他生成固定列参数的公式也可能可以参考这种思路去改。 大海:对的。这样做真是就算列数变了也不怕了。
♣ 题目部分 在Oracle中,如何列举某个用户下所有表的注释及列的注释?...♣ 答案部分 可以使用DBA_TAB_COMMENTS视图来查询表的注释,使用DBA_COL_COMMENTS视图来查询列的注释。...它们的示例分别如下所示: 某个用户下所有表的注释: SELECT D.OWNER, D.TABLE_NAME, D.COMMENTS FROM DBA_TAB_COMMENTS D WHERE D.OWNER...某个用户下某个表的所有列的注释: SELECT D.OWNER, D.TABLE_NAME,D.COLUMN_NAME, D.COMMENTS FROM DBA_COL_COMMENTS D WHERE...& 说明: 有关Oracle数据字典的更多内容可以参考我的BLOG:http://blog.itpub.net/26736162/viewspace-2153324/ 本文选自《Oracle程序员面试笔试宝典
当我们查看这些列时,很明显,其中一些列没有必要长期保留。比如说为了调试每个 Kafka 消息的元数据,以及由于合规性原因需要在一段时间后删除的各种字段都可以删掉。...大多数日志表都有用户 ID 和时间戳列。这让我们能够非常高效地压缩与用户 ID 关联的许多非规范化列。...嵌套列修剪(Nested Column Pruning):Uber 的大数据表具有嵌套程度非常高的数据。...于是,对嵌套列修剪的支持成为了 Uber 查询引擎的一个关键特性,否则深度嵌套的数据将需要从 Parquet 文件中完全读出才行——即使我们只需要嵌套结构中的单个字段....我们为 Spark 和 Presto 添加了嵌套列修剪支持。这些改进显著提高了我们的整体查询性能,我们还将它们回馈给了开源社区。
非对象方式及数字化属性编目(全文文本、图像、声音、影视、超媒体等信息),自定义元数据。 不同类型的数据可以形成了关联并处理非结构化数据。...处理的结果可以通过查询引擎对接应用,包括 Flink、Spark、Presto 等。...中自动化创建Delta表的映射表,即可通过Hive MR、Tez、Presto等查询引擎直接进行数据查询及分析。...并且,为了更加适配业务场景,我们在封装层实现了多种实用功能: 实现了类似Iceberg的hidden partition功能,用户可选择某些列做适当变化形成一个新的列,此列可作为分区列,也可作为新增列,...嵌套Json自定义层数解析,我们的日志数据大都为Json格式,其中难免有很多嵌套Json,此功能支持用户选择对嵌套Json的解析层数,嵌套字段也会被以单列的形式落入表中。
这就要从列式存储的原理说起,从图1中可以看到,相对于关系数据库中通常使用的行式存储,在使用列式存储时每一列的所有元素都是顺序存储的。...列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。不同的列块可能使用不同的算法进行压缩。...数据访问 说到列式存储的优势,Project下推是无疑最突出的,它意味着在获取表中原始数据时只需要扫描查询中需要的列,由于每一列的所有值都是连续存储的,避免扫描整个表文件内容。...stripe元数据:保存stripe的位置、每一个列的在该stripe的统计信息以及所有的stream类型和位置。...stripe中的index信息,然后根据index中统计信息以及SearchArgument参数确定需要读取的row group编号,再根据includes数据决定需要从这些row group中读取的列
但是,基于规则的优化(RBO)不能解决所有问题。 在关系数据库中早有另一种优化方式,也就是基于代价的优化CBO。...CBO通过搜索join顺序的所有解空间(表太多的情况下可以用有限深度的贪婪算法),并且算出对应的代价,可以找到最好的顺序。这些都已经在关系数据库中得到了实践。...这其中没有列存储的一些关键特性,而这些特性在以前的列式数据库中(比如我以前用过的Infobright)早已用到。...footer提供读取stream的位置信息,以及更多的统计值如sum/count等。...对嵌套格式做列存储的难点在于,存储时需要标记某个数据对应于哪一个存储结构,或者说是哪条记录,所以需要用数据清楚的进行标记。
整体介绍 先简单介绍下: Parquet 是一种支持嵌套结构的列式存储格式 非常适用于 OLAP 场景,按列存储和扫描 诸如 Parquet 这种列存的特点或优势主要体现在两方面。...例如 parquet-mr 项目里的 parquet-pig 项目就是负责把内存中的 Pig Tuple 序列化并按列存储成 Parquet 格式,以及反过来把 Parquet 文件的数据反序列化成 Pig...支持嵌套的数据模型 Parquet 支持嵌套结构的数据模型,而非扁平式的数据模型,这是 Parquet 相对其他列存比如 ORC 的一大特点或优势。...2、列块,Column Chunk:行组中每一列保存在一个列块中,一个列块具有相同的数据类型,不同的列块可以使用不同的压缩。...关于 Parquet 与 ORC,首先建议根据实际情况进行选择。另外,根据笔者的综合评估,如果不是一定要使用 ORC 的特性,还是建议选择 Parquet。
01 整体介绍 先简单介绍下: Parquet 是一种支持嵌套结构的列式存储格式 非常适用于 OLAP 场景,按列存储和扫描 诸如 Parquet 这种列存的特点或优势主要体现在两方面。...例如 parquet-mr 项目里的 parquet-pig 项目就是负责把内存中的 Pig Tuple 序列化并按列存储成 Parquet 格式,以及反过来把 Parquet 文件的数据反序列化成 Pig...03 支持嵌套的数据模型 Parquet 支持嵌套结构的数据模型,而非扁平式的数据模型,这是 Parquet 相对其他列存比如 ORC 的一大特点或优势。...2、列块,Column Chunk:行组中每一列保存在一个列块中,一个列块具有相同的数据类型,不同的列块可以使用不同的压缩。...关于 Parquet 与 ORC,首先建议根据实际情况进行选择。另外,根据笔者的综合评估,如果不是一定要使用 ORC 的特性,还是建议选择 Parquet。
可以添加、删除、修改和移动列(包括嵌套列) 2. 分区列不能进化 3. 不能对 Array 类型的嵌套列进行添加、删除或操作 为此我们针对该功能进行了相关测试和调研工作。...实现完整schema变更的查询 大体流程如下: 1.总体流程为某个查询进入dataSource中,选择具体的relacation,获取查询schema,获取scan 2.在scan中获取每个基础文件或日志的数据块对应的数据...6.3 Presto遇到的问题 由于Presto同样使用hive的元数据,330的presto遇到的问题和hive遇到的问题一致,查询rt表仍为查询ro表 trino-360 和 presto275 使用某个...改列名 是 按顺序查询基础文件,名字不同,顺序相同 出现串列异常,除非所有文件组的最新基础文件都是修改列操作之后产生的,才能准确。...但该方案还比较粗糙,后续有以下方面可以继续改进 • 多引擎支持:支持所有引擎的查询比如Hive,Presto,Trino等 • 降低小文件影响:由于历史schema的写入逻辑,如果打开这个功能,一次数据写入
return count; } } 第一个for循环控制行,第二个while循环来二分查找, 让Low=high 结束找到第一个负数开始出现的下标
可以根据查询要求和计算任务的复杂度选择不同的引擎,如在IDEX上用Presto查询时效性要求较高的语句,用Spark执行一些计算量很大的ETL任务,用Flink进行流式任务计算。 3. ...湖仓一体方案遇到的挑战和改进 日志数据从各个终端写入消息队列,然后通过Spark批写入或者Flink流式(开发中)写入数据湖,入湖的数据可以通过Spark/Flink/Presto进行查询分析。...(目前已经超过1000列,还在持续增加中),并且顶级列只有21个,所以是一个复杂的嵌套类型的表结构。...B、表的Schema中有很多字段是嵌套类型的,但是在Spark 2.X版本对嵌套类型的谓词下推和列剪枝支持的不是很好,在实际的查询中发现读了很多不必要的数据。...列字段的TTL源自不是所有的列都有相同的价值,特别是日志表的一千多个字段,有些字段的实效性是小于别的字段的,所以可减少这些字段的存储时间以此来降低整个表的存储成本。
,例如一个典型的日志的 schema 有 87 列,嵌套了 7 层。...例如 parquet-mr 项目里的 parquet-pig 项目就是负责把内存中的 Pig Tuple 序列化并按列存储成 Parquet 格式,以及反过来把 Parquet 文件的数据反序列化成 Pig...所有的数据被水平切分成 Row group,一个 Row group 包含这个 Row group 对应的区间内的所有列的 column chunk。...Definition Level 嵌套数据类型的特点是有些 field 可以是空的,也就是没有定义。如果一个 field 是定义的,那么它的所有的父节点都是被定义的。...所以在存储非嵌套类型的时候,Parquet 格式也是一样高效的。
它将数据索引存储在Segments文件中,Segment文件按列来存储,并通过时间分区来进行横向分割。Druid将数据列分为了三种不同的类型: ?...对于维度列就没那么简单了,因为它们需要支持过滤和聚合操作,因此每个维度需要下面三个数据结构: (1) 一个map,Key是维度的值,值是一个整型的id (2) 一个存储列的值得列表,用(1)中的map编码的...list (3) 对于列中的每个值对应一个bitmap,这个bitmap用来指示哪些行包含这个个值。...支持自定义的嵌套数据集,数据灵活,,支持查询复杂的半结构化数据。 与Hive一体化(Hive表和视图的查询,支持所有的Hive文件格式和HiveUDFS)。 支持多数据源,包括NoSQL数据库。...ClickHouse 作为目前所有开源MPP计算框架中计算速度最快的,它在做多列的表,同时行数很多的表的查询时,性能是很让人兴奋的,但是在做多表的join时,它的性能是不如单宽表查询的。
领取专属 10元无门槛券
手把手带您无忧上云