首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

第3天:核心概念之RDD

计算:将这种类型的操作应用于一个RDD后,它可以指示Spark执行计算并将计算结果返回。 为了在PySpark中执行相关操作,我们需要首先创建一个RDD对象。...', 'pyspark and spark' ] foreach(function)函数 foreach函数接收一个函数作为参数,将RDD中所有的元素作为参数调用传入的函数。...) filter(function)函数 filter函数传入一个过滤器函数,并将过滤器函数应用于原有RDD中的所有元素,并将满足过滤器条件的RDD元素存放至一个新的RDD对象中并返回。...map函数传入一个函数作为参数,并将该函数应用于原有RDD中的所有元素,将所有元素针对该函数的输出存放至一个新的RDD对象中并返回。...reduce函数接收一些特殊的运算符,通过将原有RDD中的所有元素按照指定运算符进行计算,并返回计算结果。

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

    一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ;...RDD#flatMap 方法 是 在 RDD#map 方法 的基础上 , 增加了 " 解除嵌套 " 的作用 ; RDD#flatMap 方法 也是 接收一个 函数 作为参数 , 该函数被应用于 RDD...进行处理 , 然后再 将 计算结果展平放到一个新的 RDD 对象中 , 也就是 解除嵌套 ; 这样 原始 RDD 对象 中的 每个元素 , 都对应 新 RDD 对象中的若干元素 ; 3、RDD#flatMap...旧的 RDD 对象 oldRDD 中 , 每个元素应用一个 lambda 函数 , 该函数返回多个元素 , 返回的多个元素就会被展平放入新的 RDD 对象 newRDD 中 ; 代码示例 : # 将 字符串列表...,将每个元素 按照空格 拆分 rdd2 = rdd.flatMap(lambda element: element.split(" ")) # 打印新的 RDD 中的内容 print(rdd2.collect

    40310

    【Python】PySpark 数据计算 ① ( RDD#map 方法 | RDD#map 语法 | 传入普通函数 | 传入 lambda 匿名函数 | 链式调用 )

    一、RDD#map 方法 1、RDD#map 方法引入 在 PySpark 中 RDD 对象 提供了一种 数据计算方法 RDD#map 方法 ; 该 RDD#map 函数 可以对 RDD 数据中的每个元素应用一个函数..., 该 被应用的函数 , 可以将每个元素转换为另一种类型 , 也可以针对 RDD 数据的 原始元素进行 指定操作 ; 计算完毕后 , 会返回一个新的 RDD 对象 ; 2、RDD#map 语法 map...方法 , 又称为 map 算子 , 可以将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ; RDD#map 语法 : rdd.map(fun) 传入的..., 计算时 , 该 函数参数 会被应用于 RDD 数据中的每个元素 ; 下面的 代码 , 传入一个 lambda 匿名函数 , 将 RDD 对象中的元素都乘以 10 ; # 将 RDD 对象中的元素都乘以...RDD rdd = sparkContext.parallelize([1, 2, 3, 4, 5]) 然后 , 使用 map() 方法将每个元素乘以 10 ; # 为每个元素执行的函数 def func

    72310

    Pyspark学习笔记(五)RDD的操作

    它应用一个具名函数或者匿名函数,对数据集内的所有元素执行同一操作。...( ) 类似于sql中的union函数,就是将两个RDD执行合并操作;但是pyspark中的union操作似乎不会自动去重,如果需要去重就使用下面的distinct distinct( ) 去除RDD中的重复值...可以是具名函数,也可以是匿名,用来确定对所有元素进行分组的键,或者指定用于对元素进行求值以确定其分组方式的表达式.https://sparkbyexamples.com/pyspark/pyspark-groupby-explained-with-example...RDD【持久化】一节已经描述过 二、pyspark 行动操作     PySpark RDD行动操作(Actions) 是将值返回给驱动程序的 PySpark 操作.行动操作会触发之前的转换操作进行执行...intersection() 返回两个RDD中的共有元素,即两个集合相交的部分.返回的元素或者记录必须在两个集合中是一模一样的,即对于键值对RDD来说,键和值都要一样才行。

    4.4K20

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    ---- 文章目录 1、-------- 查 -------- --- 1.1 行元素查询操作 --- **像SQL那样打印列表前20元素** **以树的形式打印概要** **获取头几行到本地:**...**查询总行数:** 取别名 **查询某列为null的行:** **输出list类型,list中每个元素是Row类:** 查询概况 去重set操作 随机抽样 --- 1.2 列元素操作 --- **获取...参考文献 ---- 1、-------- 查 -------- — 1.1 行元素查询操作 — 像SQL那样打印列表前20元素 show函数内可用int类型指定要打印的行数: df.show() df.show...**其中,monotonically_increasing_id()生成的ID保证是单调递增和唯一的,但不是连续的。...min(*cols) —— 计算每组中一列或多列的最小值 sum(*cols) —— 计算每组中一列或多列的总和 — 4.3 apply 函数 — 将df的每一列应用函数f: df.foreach

    30.5K10

    强者联盟——Python语言结合Spark框架

    WordCount例子的代码如下所示: 在上面的代码中,我个人喜欢用括号的闭合来进行分行,而不是在行尾加上续行符。 PySpark中大量使用了匿名函数lambda,因为通常都是非常简单的处理。...,其中'one', 'two','three'这样的key不会出现重复。 最后使用了wc.collect()函数,它告诉Spark需要取出所有wc中的数据,将取出的结果当成一个包含元组的列表来解析。...在此RDD之上,使用了一个map算子,将age增加3岁,其他值保持不变。map是一个高阶函数,其接受一个函数作为参数,将函数应用于每一个元素之上,返回应用函数用后的新元素。...此处使用了匿名函数lambda,其本身接受一个参数v,将age字段v[2]增加3,其他字段原样返回。从结果来看,返回一个PipelineRDD,其继承自RDD,可以简单理解成是一个新的RDD结构。...reduce的参数依然为一个函数,此函数必须接受两个参数,分别去迭代RDD中的元素,从而聚合出结果。

    1.3K30

    RDD编程

    操作 含义 filter(func) 筛选出满足函数func的元素,并返回一个新的数据集 map(func) 将每个元素传递到函数func中,并将结果返回为一个新的数据集 flatMap(func) 与...) 应用于(K,V)键值对的数据集时,返回一个新的(K, V)形式的数据集,其中每个值是将每个key传递到函数func中进行聚合后的结果 (1)filter(func) filter(func)会筛选出满足函数...(func)应用于(K,V)键值对的数据集时,返回一个新的(K, V)形式的数据集,其中的每个值是将每个key传递到函数func中进行聚合后得到的结果。...reduce(func) 通过函数func(输入两个参数并返回一个值)聚合数据集中的元素 foreach(func) 将数据集中的每个元素传递到函数func中运行 以下是通过一个实例来介绍上表中的各个行动操作...,只需要对events 这个RDD的每个元素求哈希值(采用与userData相同的哈希函数)。

    5600

    Pyspark学习笔记(五)RDD操作(二)_RDD行动操作

    with examples 2.Apache spark python api 一、PySpark RDD 行动操作简介     PySpark RDD行动操作(Actions) 是将值返回给驱动程序的...pyspark.RDD.collect 3.take() 返回RDD的前n个元素(无特定顺序) (仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中) pyspark.RDD.take...n个元素(按照降序输出, 排序方式由元素类型决定) (仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中) pyspark.RDD.top print("top_test\...; 处一般可以指定接收两个输入的 匿名函数; pyspark.RDD.reduce print("reduce_test\n",flat_rdd_test.reduce...和map类似,但是由于foreach是行动操作,所以可以执行一些输出类的函数,比如print操作 pyspark.RDD.foreach 10.countByValue() 将此 RDD 中每个唯一值的计数作为

    1.6K40

    Spark Extracting,transforming,selecting features

    ,训练得到Word2VecModel,该模型将每个词映射到一个唯一的可变大小的向量上,Word2VecModel使用文档中所有词的平均值将文档转换成一个向量,这个向量可以作为特征用于预测、文档相似度计算等...假设我们有下面这个DataFrame,两列为id和texts: id texts 0 Array("a", "b", "c") 1 Array("a", "b", "b", "c", "a") texts中的每一行都是一个元素为字符串的数组表示的文档...,近似最近邻搜索会返回少于指定的个数的行; LSH算法 LSH算法通常是一一对应的,即一个距离算法(比如欧氏距离、cos距离)对应一个LSH算法(即Hash函数); Bucketed Random Projection...|}{|\mathbf{A} \cup \mathbf{B}|} MinHash对集合中每个元素应用一个随机哈希函数g,选取所有哈希值中最小的: h(\mathbf{A}) = \min_{a \in...(10, Array[(2,1.0),(3,1.0),(5,1.0)])表示空间中有10个元素,集合包括元素2,3,5,所有非零值被看作二分值中的”1“; from pyspark.ml.feature

    21.9K41

    大数据开发!Pandas转spark无痛指南!⛵

    Pandas 语法如下:df = pd.DataFrame(data=data, columns=columns)# 查看头2行df.head(2) PySpark创建DataFrame的 PySpark...PandasPandas可以使用 iloc对行进行筛选:# 头2行df.iloc[:2].head() PySpark在 Spark 中,可以像这样选择前 n 行:df.take(2).head()#...或者df.limit(2).head()注意:使用 spark 时,数据可能分布在不同的计算节点上,因此“第一行”可能会随着运行而变化。...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python函数。

    8.2K72

    【Spark研究】Spark编程指南(Python版)

    在默认情况下,当Spark将一个函数转化成许多任务在不同的节点上运行的时候,对于所有在函数中使用的变量,每一个任务都会得到一个副本。有时,某一个变量需要在任务之间或任务与驱动程序之间共享。...举个例子,map是一个转化操作,可以将数据集中每一个元素传给一个函数,同时将计算结果作为一个新的RDD返回。...这个数据集不是从内存中载入的也不是由其他操作产生的;lines仅仅是一个指向文件的指针。第二行将lineLengths定义为map操作的结果。...(n, [ordering]) | 返回排序后的前n个元素 saveAsTextFile(path) | 将数据集的元素写成文本文件 saveAsSequenceFile(path) | 将数据集的元素写成序列文件...对Python用户来说唯一的变化就是组管理操作,比如groupByKey, cogroup, join, 它们的返回值都从(键,值列表)对变成了(键, 值迭代器)对。

    5.1K50

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    一、RDD#sortBy 方法 1、RDD#sortBy 语法简介 RDD#sortBy 方法 用于 按照 指定的 键 对 RDD 中的元素进行排序 , 该方法 接受一个 函数 作为 参数 , 该函数从...RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...或 lambda 匿名函数 , 用于 指定 RDD 中的每个元素 的 排序键 ; ascending: Boolean 参数 : 排序的升降设置 , True 生序排序 , False 降序排序 ;...返回值说明 : 返回一个新的 RDD 对象 , 其中的元素是 按照指定的 排序键 进行排序的结果 ; 2、RDD#sortBy 传入的函数参数分析 RDD#sortBy 传入的函数参数 类型为 : (T...值 Value 进行相加 ; 将聚合后的结果的 单词出现次数作为 排序键 进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4 中的数据进行排序

    49510

    PySpark数据计算

    一、map算子定义:map算子会对RDD中的每个元素应用一个用户定义的函数,并返回一个新的 RDD。...,这个函数将传入的每个元素乘以 10;第二个map算子在第一个map的结果上再次调用新的 lambda 函数,每个元素再加上 5。...二、flatMap算子定义: flatMap算子将输入RDD中的每个元素映射到一个序列,然后将所有序列扁平化为一个单独的RDD。简单来说,就是对rdd执行map操作,然后进行解除嵌套操作。...三、reduceByKey算子定义:reduceByKey算子用于将具有相同键的值进行合并,并通过指定的聚合函数生成一个新的键值对 RDD。...四、filter算子定义:filter算子根据给定的布尔函数过滤RDD中的元素,返回一个只包含满足条件的元素的新RDD。

    14910

    NLP和客户漏斗:使用PySpark对事件进行加权

    TF-IDF是一种用于评估文档或一组文档中单词或短语重要性的统计度量。通过使用PySpark计算TF-IDF并将其应用于客户漏斗数据,我们可以了解客户行为并提高机器学习模型在预测购买方面的性能。...在这种情况下,企业通常需要使用客户关系管理(CRM)系统或其他软件跟踪客户的交互和行为,然后将TF-IDF算法应用于这些数据以计算每个事件的权重。...使用PySpark计算TF-IDF 为了计算一组事件的TF-IDF,我们可以使用PySpark将事件按类型分组,并计算每个类型的出现次数。...为了本示例,假设你有一个包含以下列的CSV文件: customer_id:每个客户的唯一ID event_type:客户执行的事件类型(例如“查看产品”,“添加到购物车”,“购买商品”) timestamp...权重,你需要使用窗口函数将数据按时间窗口进行分区,并为每个事件分配一个排名。

    21130

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    ", 12) PySpark 中 , 将 二元元组 中 第一个元素 称为 键 Key , 第二个元素 称为 值 Value ; 按照 键 Key 分组 , 就是按照 二元元组 中的 第一个元素 的值进行分组...被组成一个列表 ; 然后 , 对于 每个 键 key 对应的 值 value 列表 , 使用 reduceByKey 方法提供的 函数参数 func 进行 reduce 操作 , 将列表中的元素减少为一个...; 最后 , 将减少后的 键值对 存储在新的 RDD 对象中 ; 3、RDD#reduceByKey 函数语法 RDD#reduceByKey 语法 : reduceByKey(func, numPartitions...V 类型的 ; 使用 reduceByKey 方法 , 需要保证函数的 可结合性 ( associativity ) : 将两个具有 相同 参数类型 和 返回类型 的方法结合在一起 , 不会改变它们的行为的性质...rdd 数据 的 列表中的元素 转为二元元组 , 第一个元素设置为 单词 字符串 , 第二个元素设置为 1 # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2

    76920

    Spark笔记10-demo

    案例 根据几个实际的应用案例来学会spark中map、filter、take等函数的使用 案例1 找出TOP5的值 filter(func):筛选出符合条件的数据 map(func):对传入数据执行func...,每个RDD元素都是文本文件中的一行数据(可能存在空行) res1 = lines.filter(lambda line:(len(line.strip()) > 0) and (len(line.split...(",")) == 4)) # 字符串后面的空格去掉,并且保证长度是4 res2 = res1.map(lambda x:x.split(",")[2]) # 将列表中的元素分割,取出第3个元素,...仍是字符串 res3 = res2.map(lambda x:(int(x), "")) # 将字符串转成int类型,并且变成key-value形式(50, ""),value都是空格 res4 =....map(lambda x:x[0]) # 取出第一个元素并通过take取出前5个 res7 = res6.take(5) for a in res7: print(a) 文件全局排序 from pyspark

    48620

    Python大数据处理扩展库pySpark用法精要

    扩展库pyspark提供了SparkContext(Spark功能的主要入口,一个SparkContext表示与一个Spark集群的连接,可用来创建RDD或在该集群上广播变量)、RDD(Spark中的基本抽象...(用来配置Spark)、SparkFiles(访问任务的文件)、StorageLevel(更细粒度的缓冲永久级别)等可以公开访问的类,并且提供了pyspark.sql、pyspark.streaming...([1, 1, 2, 3]).distinct().collect()) #返回唯一元素 [1, 2, 3] >>> rdd = sc.parallelize(range(10)) >>> rdd.map...25, 256, 289, 324, 361] >>> sc.parallelize([1,2,3,3,3,2]).distinct().collect() #distinct()返回包含唯一元素的..., 5]).reduce(add) #reduce()函数的并行版本 15 >>> sc.parallelize([1, 2, 3, 4, 5]).reduce(mul) 120 >>> result

    1.8K60

    Pyspark学习笔记(五)RDD操作(四)_RDD连接集合操作

    /集合操作 1.join-连接 对应于SQL中常见的JOIN操作 菜鸟教程网关于SQL连接总结性资料 Pyspark中的连接函数要求定义键,因为连接的过程是基于共同的字段(键)来组合两个RDD中的记录...at xxxxxxxxx>, pyspark.resultiterable.ResultIterable at xxxxxxxxx>)), ..., ] #因为该函数输出的格式就是: RDD[Tuple...join操作只是要求 key一样,而intersection 并不要求有key,是要求两边的条目必须是一模一样,即每个字段(列)上的数据都要求能保持一致,即【完全一样】的两行条目,才能返回。...2.3 subtract subtract(other, numPartitions) 官方文档:pyspark.RDD.subtract 这个名字就说明是在做“减法”,即第一个RDD中的元素 减去...第二个RDD中的元素,返回第一个RDD中有,但第二个RDD中没有的元素。

    1.3K20
    领券