预训练模型在不同深度学习框架中的转换是一种常见的任务。今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下。...torch_tensor.std()) model.load_state_dict(remapped_state) return model 从中可以看出,其转换步骤如下: (1)创建pytorch...的网络结构模型,设为model (2)利用mxnet来读取其存储的预训练模型,得到mxnet_weights; (3)遍历加载后模型mxnet_weights的state_dict().keys (4)...对一些指定的key值,需要进行相应的处理和转换 (5)对修改键名之后的key利用numpy之间的转换来实现加载。...为了实现上述转换,首先pip安装mxnet,现在新版的mxnet安装还是非常方便的。 ? 第二步,运行转换程序,实现预训练模型的转换。 ? 可以看到在相当的文件夹下已经出现了转换后的模型。
pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用网络结构...往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数。...调用model的load_state_dict方法用预训练的模型参数来初始化自己定义的新网络结构,这个方法就是PyTorch中通用的用一个模型的参数初始化另一个模型的层的操作。...,再将预训练中的参数提取到自己的网络中来。...到此我们实现了PyTorch中使用预训练的模型初始化网络的一部分参数。
虽然在bert上语言模型预训练在算法比赛中已经是一个稳定的上分操作。但是上面这篇文章难能可贵的是对这个操作进行了系统分析。...在huggingface的Transformers中,有一部分代码支持语言模型预训练(不是很丰富,很多功能都不支持比如wwm)。...为了用最少的代码成本完成bert语言模型预训练,本文借鉴了里面的一些现成代码。也尝试分享一下使用pytorch进行语言模型预训练的一些经验。...预训练的方式是采用roberta类似的方法,比如动态mask,更多的训练数据等等。在很多任务中,该模型效果要优于bert-base-chinese。...) ernie是百度发布的基于百度知道贴吧等中文语料结合实体预测等任务生成的预训练模型。
方法很简单,你只需要将模型最后的全连接层改成Dropout即可。
在专题上一期推送【萌芽时代】里,我们介绍了预训练语言模型思想的萌芽。今天我们推出的这篇推送, 将继续为大家介绍预训练语言模型是如何进一步发展和演进的。...在此感谢清华大学自然语言处理实验室关于预训练语言模型的必读论文的整理(链接:https://github.com/thunlp/PLMpapers),我们将沿此脉络继续前行,分享在阅读中的理解和对某些常用模型实战中的一些心得...证明了预训练的过程直接提高了seq2seq模型的泛化能力,再次提出了预训练的重要性和通用性。...文章的思路借鉴了s上期介绍的Semi-supervised Sequence Learning对预训练语言模型的应用,并进一步将其发展,展现了该方法在自然语言处理中的通用性。...经过预训练以后,实际下游模型使用起来就比较简单了。比如拿到一句句子,经过底层非上下文相关字嵌入层,生成字向量,就是图3中黄色的向量表征。
PyTorch-Transformers(此前叫做pytorch-pretrained-bert)是面向自然语言处理,当前性能最高的预训练模型开源库。...该项目支持 BERT, GPT, GPT-2, Transfo-XL, XLNet, XLM 等,并包含 27 个预训练模型。.../index.html 该开源库现在包含了 PyTorch 实现、预训练模型权重、运行脚本和以下模型的转换工具: 1、谷歌的 BERT,论文:“BERT: Pre-training of Deep Bidirectional...27个预训练模型 项目中提供了27个预训练模型,下面是这些模型的完整列表,以及每个模型的简短介绍。...SQUAD上的令牌级分类器; SWAG分类语料库中的序列级多选分类器; 另一个目标语料库上的BERT语言模型。
PyTorch 3. 提交结果 分别使用两种框架,加载预训练模型,对句对进行分类 数据下载:千言数据集:文本相似度 1....self.dev_ds, self.test_ds = load_dataset(datasetname, splits=["train", "dev", "test"]) # 使用预训练模型的...format(F1)) print("-----训练完成------") # 用最好的模型参数,提交预测 state_dict = paddle.load...PyTorch 预训练模型下载:https://huggingface.co/nghuyong/ernie-1.0 # %% # 比赛地址 # https://aistudio.baidu.com...cpu') self.train_ds, self.dev_ds, self.test_ds = load_dataset(self.datasetname) # 使用预训练模型的
torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易。本文主要介绍如何 fine-tune torchvision 中预训练好的模型。...所对应权重,并加载到模型中 # 也可以自己下载 权重,然后 load 到 模型中,源码中有 权重的地址。...., out_features=100) # 这样就 哦了,修改后的模型除了输出层的参数是 随机初始化的,其他层都是用预训练的参数初始化的。...用刚才举的例子就是: 预训练的模型中 有个 名字叫fc 的 Module。 在类定义外,我们 将另一个 Module 重新 赋值给了 fc。...类定义内的 fc 对应的 Module 就会从 模型中 删除。
由于待训练的模型参数很多(增加model capacity),而专门针对检索任务的有标注数据集较难获取,所以要使用预训练模型。 2....预训练模型在倒排索引中的应用 基于倒排索引的召回方法仍是在第一步召回中必不可少的,因为在第一步召回的时候我们面对的是海量的文档库,基于exact-match召回速度很快。...但是,其模型capacity不足,所以可以用预训练模型来对其进行模型增强。...例如对于QA中的question,可以把训练目标定为包含答案的句子、或者包含答案的文章title,然后用seq2seq模型训练,再把模型生成的文本加到query后面,形成扩增的query。...对,对于一个document,先得到其门控向量G, 然后去和实际的query进行对比: T为真实query的bag of words 下一篇将介绍预训练模型在深度召回和精排中的应用
翻译自:Fine-tuning a model with the Trainer API Transformers 提供了一个 Trainer 类,处理微调在数据集上提供的任何预训练模型。...必须提供的唯一参数是保存训练模型的目录以及checkpoint。 对于其余所有内容,可以保留默认值,这对于基本的微调应该非常有效。...为了从我们的模型中获得一些预测,我们可以使用 Trainer.predict() 方法: predictions = trainer.predict(tokenized_datasets["validation...为了构建我们的compute_metric()函数,我们将依赖于HuggingFace Evaluate库中的指标。...TrainingArguments,其评估策略设置为“epoch”和一个新模型 - 否则,我们将继续训练已经训练过的模型。
导读 相对于传统的ID形式的推荐系统(IDRec),本文在模型中引入预训练模型,但预训练模型的参数很多,会导致延迟增加。因此,大部分无法在推荐系统中使用。本文提出一种即插即用的方法,即PPM。...PPM采用多模态特征作为输入,并利用大规模数据进行预训练。然后,将PPM插入到IDRec模型中,以提高统一模型的性能和迭代效率。...在这一层中,通过query匹配任务和实体预测任务,使用电商数据对预训练模型(BERT和ResNet)进行微调,得到给定商品的图像和文本表示。...预训练的CTR模型可以集成到IDRec模型中,用于端到端训练。...为了加速训练过程并最大限度地减少在线延迟,这些表征被缓存在hdfs中,而其他参数则通过预加载预训练的CTR模型来初始化。
针对任何领域微调预训练 NLP 模型的分步指南 简介 在当今世界,预训练 NLP 模型的可用性极大地简化了使用深度学习技术对文本数据的解释。...动机 尽管 BERT 和通用句子编码器 (USE) 等预训练 NLP 模型可以有效捕获语言的复杂性,但由于训练数据集的范围不同,它们在特定领域应用中的性能可能会受到限制。...数据概览 为了使用此方法对预训练的 NLP 模型进行微调,训练数据应由文本字符串对组成,并附有它们之间的相似度分数。...在模型训练过程中,我们评估模型在此基准集上的性能。每次训练运行的持久分数是数据集中预测相似性分数和实际相似性分数之间的皮尔逊相关性。...通过遵循此方法并将其适应您的特定领域,您可以释放预训练 NLP 模型的全部潜力,并在自然语言处理任务中取得更好的结果 往期推荐 Ubuntu 包管理的 20 个“apt-get”命令 实战|如何在Linux
Github上刚刚开源了一个Google BERT的PyTorch实现版本,同时包含可加载Google BERT预训练模型的脚本,感兴趣的同学可以关注: https://github.com/huggingface.../pytorch-pretrained-BERT PyTorch version of Google AI's BERT model with script to load Google's pre-trained...save file by using the convert_tf_checkpoint_to_pytorch.py script....The rest of the repository only requires PyTorch....PyTorch models for BERT We included three PyTorch models in this repository that you will find in modeling.py
预训练的优点可以总结为以下三点: 在大规模语料库上的预训练可以学习到通用语言表示,对下游任务很有帮助 预训练提供了更好的模型初始化,使得在目标任务上有更好的泛化性能和更快的收敛速度 预训练可以看做一种避免在小数据集上过拟合的正则化方法...我们已经在 2.2 节中简单介绍了上下文编码器的不同结构,本章我们将专注于预训练任务,并给出一种 PTM 的分类方法。 3.1 预训练任务 预训练任务对于学习语言的通用表示至关重要。...简单来说,MLM 首先在输入句子中遮挡住部分的词语(token),然后训练模型来基于剩下的词语预测被遮住的词语。...3.1.3 排列语言模型(PLM) 针对 MLM 任务在预训练过程中引入的 mask 等特殊标记可能会导致与下游任务不匹配的问题,「XLNet」 提出排列了「排列语言模型」(PLM)。...原作者认为,NSP 实际上是在单个任务中融合了主题预测和连贯性预测(因为其负样本是随机采样的),由于主题预测更容易,所以模型将更依赖于主题预测,而降低对连贯性的预测效果。
TLDR: 本文对预训练语言模型和基于预训练语言模型的序列推荐模型进行了广泛的模型分析和实验探索,发现采用行为调整的预训练语言模型来进行基于ID的序列推荐模型的物品初始化是最高效且经济的,不会带来任何额外的推理成本...当前基于预训练语言模型的序列推荐模型直接使用预训练语言模型编码用户历史行为的文本序列来学习用户表示,而很少深入探索预训练语言模型在行为序列建模中的能力和适用性。...基于此,本文首先在预训练语言模型和基于预训练语言模型的序列推荐模型之间进行了广泛的模型分析,发现预训练语言模型在行为序列建模中存在严重的未充分利用(如下图1)和参数冗余(如下表1)的现象。...受此启发,本文探索了预训练语言模型在序列推荐中的不同轻量级应用,旨在最大限度地激发预训练语言模型用于序列推荐的能力,同时满足实际系统的效率和可用性需求。...在五个数据集上的广泛实验表明,与经典的序列推荐和基于预训练语言模型的序列推荐模型相比,所提出的简单而通用的框架带来了显著的改进,而没有增加额外的推理成本。
」 通过对每个单词添加情感极性,将 MLM 拓展为 Label-Aware MLM,在多种情感分类任务上达到 SOTA(「语言知识」);「SenseBERT」 在预训练时不仅预测被遮罩的词语,还预测其在...此外,还有人将语言模型扩展为了「知识图谱语言模型」(KGLM)和「潜在关系语言模型」(LRLM),两者均允许以知识图谱为条件进行预测。这些以 KG 为条件的语言模型展现了用于预训练的潜力。...一些面向任务的预训练模型也被提出,诸如 「SentiLR」 中的情绪 Label-Aware MLM(用于情绪分析),用于文本总结的 Gap Sentence Generation(GSG),用于不流畅语流检测的...5.2 如何迁移 为了将 PTM 中的知识迁移到下游 NLP 任务中,我们需要考虑以下几个问题: 5.2.1 选择合适的预训练任务、模型结构和语料 不同的 PTM 在同样的下游任务中通常有不同的效果,因为其基于不同的预训练任务...5.2.3 是否进行微调 目前,模型迁移的方式可以分为两种:「特征提取」(预训练参数被冻结)和「微调」(预训练参数不被冻结,进行微调)。在特征提取的方式中,预训练模型被视作现成的特征提取器。
所以,我当时写的nlp预训练模型笔记中,称赞bert为集大成者。觉得在预训练这块,像他这样突的突破性进展,短期内是不会有了。(GPT当时做的其实挺不错的,但开源速度太慢了!)...5.1 多语言 基于多语言的预训练模型,跟单语言的区别在于,学习任务的设计,对平行语料的利用,以及生成式预训练模型。...但这也说明预训练模型有over-parameterized的问题。 「模型剪枝」——预训练模型会不会有一些useless的部分呢?...解释和理论分析 这一块其实蛮有意思的,四个部分。预训练模型学了什么,预训练模型的鲁棒性,structural sparsity/modularity,以及预训练模型的理论分析。...以及low levels of pruning也不会影响下游task的效果。 7.3 预训练模型的理论分析 为何预训练有效果?
使用预训练模型的好处 已提供预训练模型来支持需要执行情绪分析或图像特征化等任务但没有资源获取大型数据集或训练复杂模型的客户。使用预训练模型可以让您最有效地开始文本和图像处理。...目前可用的模型是用于情感分析和图像分类的深度神经网络 (DNN) 模型。所有四个预训练模型都在 CNTK 上进行了训练。...指定要安装的组件时,添加至少一种语言(R Server 或 Python)和预训练模型。需要语言支持。这些模型不能作为独立组件安装。 设置完成后,验证模型在您的计算机上。...预训练模型是本地的,在您运行 setup 时分别添加到 MicrosoftML 和 microsftml 库中。...有关演示使用预训练模型的示例,请参阅MicrosoftML 的 R 示例和 MicrosoftML的Python 示例。
这篇论文不是从目标检测的高mAP值或者速度更快出发,而是从另外一个角度切入来说明fine-tune后的检测模型和直接训练的检测模型的差距其实是可以减少的,也即是说一些检测模型可以摆脱fine-tune这一过程...原因如下: 预训练的模型一般是在分类图像数据集比如Imagenet上训练的,不一定可以迁移到检测模型的数据上(比如医学图像)。 预训练的模型,其结构都是固定的,因此如果想要再修改的话比较麻烦。...预训练的分类网络的训练目标一般和检测目标不一致,因此预训练的模型对于检测算法而言不一定是最优的选择。 基于上面这几点原因,论文提出了一个从开始的检测模型DSOD,我们接下来看看是怎么设计的吧。 4....总结 DSOD是在SSD的基础上结合了DenseNet的思想,使得网络可以在不使用预训练模型的条件下收敛得和使用预训练模型的BaseLine模型一样好,另外DenseNet的引入也使得相比SSD来说DSOD...如果专注于特殊图像检测或者难以搞定预训练模型的场景这篇文章的思想是值得借鉴的。 7.
作者 | Chilia 哥伦比亚大学 nlp搜索推荐 整理 | NewBeeNLP 上一篇中,我们介绍了预训练模型在建立倒排索引中的应用:总结!...语义信息检索中的预训练模型 这一篇将介绍预训练模型在深度召回和精排中的应用。 4....相似度即是query和document的每个embedding的点积最大值。 4.2 预训练任务 我们知道,预训练任务和下游任务越相似,模型在下游任务上的表现就越好。...具体的,是用Roberta-base预训练模型来初始化双塔模型,然后先是用BM25做warm-up(用BM25做难负例采样),之后再通过异步方法更新索引,用正在训练的模型的checkpoint进行难负例采样...预训练模型在精排中的应用 精排阶段可以是多个cascading模型级联构成,数据量越来越少、模型越来越复杂。
领取专属 10元无门槛券
手把手带您无忧上云