首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pyspark之dataframe操作

、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...14、when操作 1、连接本地spark import pandas as pd from pyspark.sql import SparkSession spark = SparkSession...color_df.columns # ['color', 'length'] # 查看行数,和pandas不一样 color_df.count() # dataframe列名重命名 # pandas...# join默认是内连接,最终结果会存在重复列名 # 如果是pandas,重复列会用_x,_y等后缀标识出来,但spark不会 # join会在最后的dataframe中存在重复列 final_data...df1.dropDuplicates().show() # 只要某一列有重复值,则去重 df1.dropDuplicates(subset=['FirstName']).show() # pandas

10.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas系列4_合并和连接

    、right、left on 用于连接的列名,默认是相同的列名 left_on \right_on 左侧、右侧DF中用作连接键的列 sort 根据连接键对合并后的数据进行排序,默认是T suffixes...重复列名,直接指定后缀,用元组的形式(’_left’, ‘_right’) left_index、right_index 将左侧、右侧的行索引index作为连接键(用于index的合并) df1 =...1 2 a 2 0 3 a 4 0 4 a 5 0 两个DF没有相同的列属性怎么处理 若没有相同的列属性,需要指定left_on和right_on pd.merge(df3,df4,left_on='...1 b 1.0 1.0 2 a 2.0 0.0 3 a 4.0 0.0 4 a 5.0 0.0 5 c 3.0 NaN 6 c 6.0 NaN 7 d NaN 2.0 重复列名处理 left = pd.DataFrame...,key2重复了,默认是在key2的后面添加_x、_y key1 key2_x lval key2_y rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo

    78810

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...-------- 6.1 distinct:返回一个不包含重复记录的DataFrame 6.2 dropDuplicates:根据指定字段去重 -------- 7、 格式转换 -------- pandas-spark.dataframe...去重set操作 data.select('columns').distinct().show() 跟py中的set一样,可以distinct()一下去重,同时也可以.count()计算剩余个数 随机抽样...-------- 6.1 distinct:返回一个不包含重复记录的DataFrame 返回当前DataFrame中不重复的Row记录。...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark

    30.5K10

    PySpark SQL——SQL和pd.DataFrame的结合体

    导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...功能也几乎恰是这样,所以如果具有良好的SQL基本功和熟练的pandas运用技巧,学习PySpark SQL会感到非常熟悉和舒适。...这也是一个完全等同于SQL中相应关键字的操作,并支持不同关联条件和不同连接方式,除了常规的SQL中的内连接、左右连接、和全连接外,还支持Hive中的半连接,可以说是兼容了数据库的数仓的表连接操作 union...以上主要是类比SQL中的关键字用法介绍了DataFrame部分主要操作,而学习DataFrame的另一个主要参照物就是pandas.DataFrame,例如以下操作: dropna:删除空值行 实际上也可以接收指定列名或阈值...,当接收列名时则仅当相应列为空时才删除;当接收阈值参数时,则根据各行空值个数是否达到指定阈值进行删除与否 dropDuplicates/drop_duplicates:删除重复行 二者为同名函数,与pandas

    10K20

    使用Spark进行数据统计并将结果转存至MSSQL

    1.2 安装MSSQL的JDBC驱动程序 在本文中,需要将运算的结果转存至MS Sql Server数据库,而要通过java连接MSSQL,需要在服务器上安装jdbc驱动。...:用户总数是去除重复后的下单数,即同一个用户下了10个订单,订单数为10,但是用户数为1。...大多数情况下,使用哪种语言并没有区别,但在Spark SQL中,Python不支持DataSet,仅支持DataFrame,而Java和Scala则两种类型都支持。...DataSet相对DataFrame的优势就是取行数据时是强类型的,而在其他方面DataSet和DataFrame的API都是相似的。...图3. http://node0:4040 作业明细 4040端口号只有在作业执行阶段可以访问,而因为我们的数据量很少,运算逻辑也极为简单,因此这个作业通常10几秒就执行完成了。

    2.2K20

    3万字长文,PySpark入门级学习教程,框架思维

    我们之前用过Python的Pandas库,也大致了解了DataFrame,这个其实和它没有太大的区别,只是调用的API可能有些不同罢了。...]).take(10)) # 稍微进阶一些,复用相同数据集,但因中间结果没有缓存,数据会重复计算 rdd1 = sc.textFile("....因为我们的代码是需要重复调用RDD1的,当没有对RDD1进行持久化的时候,每次当它被action算子消费了之后,就释放了,等下一个算子计算的时候要用,就从头开始计算一下RDD1。...代码中需要重复调用RDD1 五次,所以没有缓存的话,差不多每次都要6秒,总共需要耗时26秒左右,但是,做了缓存,每次就只需要3s不到,总共需要耗时17秒左右。...假如某个节点挂掉,节点的内存或磁盘中的持久化数据丢失了,那么后续对RDD计算时还可以使用该数据在其他节点上的副本。如果没有副本的话,就只能将这些数据从源头处重新计算一遍了。一般也不推荐使用。 2.

    10K21

    pandas多表操作,groupby,时间操作

    多表操作 merge合并 pandas.merge可根据一个或多个键将不同DataFrame中的行合并起来 pd.merge(left, right)# 默认merge会将重叠列的列名当做键,即how...='inner',有多个重复列名则选取重复列名值都相同的行 # 指定“on”作为连接键,left和right两个DataFrame必须同时存在“on”列,连接键也可N对N(少用) pd.merge(left...key列行相同的行,其他重复列名变为column_x,column_y,与on='key'相同 # suffixes:用于追加到重叠列名的末尾,默认为("_x", "_y") pd.merge(left..., on='key', how='left')#产生以left_frame的key所有值为行的dataframe,right_frame中的key没有该值的话那些列数据为NaN pd.merge(left_frame...# axis=1 左右拼接,行raw/index重复的会自动合并 pd.concat([df1, df2], axis=1) # 忽略df1和df2原来的index,重新给新的DataFrame设置从

    3.8K10

    数据导入与预处理-第6章-01数据集成

    2.冗余属性级相关分析识别 冗余属性是数据集成期间极易产生的问题,冗余是数据集成的另一重要问题。如果一个属性能由另一个或另一组属性值“推导”出,则这个属性可能是冗余的。...常用的合并数据的函数包括: 2.1 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...,可以取值为’inner’或’outer’(默认值),其中’inner’表示内连接,即合并结果为多个对象重叠部分的索引及数据,没有数据的位置填充为NaN;'outer’表示外连接,即合并结果为多个对象各自的索引及数据...lsuffix: 左DataFrame中重复列的后缀 rsuffix: 右DataFrame中重复列的后缀 sort: 按字典序对结果在连接键上排序 join方式为按某个相同列进行join: score_df...'score': ['A', 'B', 'C', 'B']}) # 两个dataframe在合并时候有相同的列名,需要使用属性lsuffix和rsuffix指定相同列名的后缀 score_df.join

    2.6K20

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    在本文的例子中,我们将使用.json格式的文件,你也可以使用如下列举的相关读取函数来寻找并读取text,csv,parquet文件格式。...('parquet_data.parquet') 4、重复值 表格中的重复值可以使用dropDuplicates()函数来消除。...', 'URL') dataframe.show(5) “Amazon_Product_URL”列名修改为“URL” 6.3、删除列 列的删除可通过两种方式实现:在drop()函数中添加一个组列名,或在...() dataFrameNaFunctions.replace() 11、重分区 在RDD(弹性分布数据集)中增加或减少现有分区的级别是可行的。...通过使用.rdd操作,一个数据框架可被转换为RDD,也可以把Spark Dataframe转换为RDD和Pandas格式的字符串同样可行。

    13.7K21

    pandas.merge用法详解

    1.merge函数的参数一览表 2.创建两个DataFrame 3.pd.merge()方法设置连接字段。...默认参数how是inner内连接,并且会按照相同的字段key进行合并,即等价于on=‘key’。 也可以显示的设置on=‘key’,这里也推荐这么做。...参数how默认值是inner内连接,上面的都是采用内连接,连接两边都有的值。 当采用outer外连接时,会取并集,并用NaN填充。 外连接其实左连接和右连接的并集。...左连接是左侧DataFrame取全部数据,右侧DataFrame匹配左侧DataFrame。(右连接right和左连接类似) 5.pd.merge()方法索引连接,以及重复列名命名。...从上面可以发现两个DataFrame中都有key列,merge合并之后,pandas会自动在后面加上(_x,_y)来区分,我们也可以通过设置suffixes来设置名字。

    1.5K20

    Pandas常用的数据处理方法

    key') 当两个DataFrame没有相同的列索引时,我们可以指定链接的列: #如果两个DataFrame的列名不同,可以分别指定 df3 = pd.DataFrame({'lkey':['b','b...要根据多个键进行合并,传入一组由列名组成的列表即可: left = pd.DataFrame({'key1':['foo','foo','bar'],'key2':['one','two','one']...上面两个表有两列重复的列,如果只根据一列进行合并,则会多出一列重复列,重复列名的处理我们一般使用merge的suffixes属性,可以帮我们指定重复列合并后的列名: pd.merge(left,right...移除重复数据,使用drop_duplicates方法,该方法默认判断全部列,不过我们也可以根据指定列进行去重. data = pd.DataFrame({'k1':['one']*3 + ['two'...4.2 数据聚合操作 特定聚合函数 我们可以像之前一样使用一些特定的聚合函数,比如sum,mean等等,但是同时也可以使用自定义的聚合函数,只需将其传入agg方法中即可: df = pd.DataFrame

    8.4K90

    独家 | 一文读懂PySpark数据框(附实例)

    列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。...这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5. 查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6....Spark默认升序排列,但是我们也可以改变它成降序排列。 PySpark数据框实例2:超级英雄数据集 1. 加载数据 这里我们将用与上一个例子同样的方法加载数据: 2. 筛选数据 3....原文标题:PySpark DataFrame Tutorial: Introduction to DataFrames 原文链接:https://dzone.com/articles/pyspark-dataframe-tutorial-introduction-to-datafra...对大数据、数据挖掘和分析项目跃跃欲试却苦于没有机会和数据。目前正在摸索和学习中,也报了一些线上课程,希望对数据建模的应用场景有进一步的了解。

    6K10

    pandas(三)

    合并数据集:   创建一个能创建dataframe的函数   def make_data(cols,ind):     data={c:[strc(c)+str(i) for i in ind]        ...',[1,2]) df2 = make_data('ab',[3,4]) pd.concat([df1,df2])  默认逐行合并axis=0(上下合并) pandas 在合并索引时会保留索引,即使是重复的...触发索引重复异常: veriy_integrity参数可以触发索引重复异常 try:   pd.concat([x,y],verify_integrity=True) except  ValueError...as e:   print('v') 忽略索引重复异常: ignore_index可以实现忽略原先索引重新创建一个整数索引 当列名有相同也有不相同时 join,join_axes join默认参数是outer...取两个数组的并集 inner指取两个数组的交集 append效果和concat相同 df1.append(df2) 重复列名 suffixes df8 = pd.DataFrame({'name':[

    54210

    Spark Extracting,transforming,selecting features

    来访问(可惜没有中文的停用词列表),bool型参数caseSensitive表示是否大小写敏感,默认是不敏感; 假设我们有下列包含id和raw的DataFrame: id raw 0 [I, saw,...也被展开了,这就很方便; from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler dataset...最少一个特征必须被选中,不允许指定重复列,因此不会出现重复列,注意,如果指定了一个不存在的字符串列会抛出异常; 输出向量会把特征按照整数指定的顺序排列,然后才是按照字符串指定的顺序; 假设我们有包含userFeatures...numHuashTables指定哈希表个数(这属于增强LSH),这也可以用于近似相似连接和近似最近邻的OR-amplification,提高哈希表的个数可以提高准确率,同时也会提高运行时间和通信成本;...近似相似连接 近似相似连接使用两个数据集,返回近似的距离小于用户定义的阈值的行对(row,row),近似相似连接支持连接两个不同的数据集,也支持数据集与自身的连接,自身连接会生成一些重复对; 近似相似连接允许转换后和未转换的数据集作为输入

    21.9K41
    领券