首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]列的所有值:** **修改列的类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------...— 2.2 新增数据列 withColumn— withColumn是通过添加或替换与现有列有相同的名字的列,返回一个新的DataFrame result3.withColumn('label', 0)...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...(pandas_df) 转化为pandas,但是该数据要读入内存,如果数据量大的话,很难跑得动 两者的异同: Pyspark DataFrame是在分布式节点上运行一些数据操作,而pandas是不可能的...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark

30.5K10

PySpark SQL——SQL和pd.DataFrame的结合体

Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...以上主要是类比SQL中的关键字用法介绍了DataFrame部分主要操作,而学习DataFrame的另一个主要参照物就是pandas.DataFrame,例如以下操作: dropna:删除空值行 实际上也可以接收指定列名或阈值...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

10K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | 一文读懂PySpark数据框(附实例)

    本文中我们将探讨数据框的概念,以及它们如何与PySpark一起帮助数据分析员来解读大数据集。 数据框是现代行业的流行词。...但是我们可以应用某些转换方法来转换它的值,如对RDD(Resilient Distributed Dataset)的转换。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。...这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5. 查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6.

    6K10

    PySpark 数据类型定义 StructType & StructField

    StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...DataFrame 结构 使用 PySpark SQL 函数 struct(),我们可以更改现有 DataFrame 的结构并向其添加新的 StructType。...下面学习如何将列从一个结构复制到另一个结构并添加新列。PySpark Column 类还提供了一些函数来处理 StructType 列。...中是否存在列 如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点...对于第二个,如果是 IntegerType 而不是 StringType,它会返回 False,因为名字列的数据类型是 String,因为它会检查字段中的每个属性。

    1.3K30

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...df.sort_values("col1", inplace=True) 数据输入和输出 1. 利用值构造一个数据框DataFrame 在Excel电子表格中,值可以直接输入到单元格中。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....VLOOKUP 相比,merge 有许多优点: 查找值不需要是查找表的第一列; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    大数据开发!Pandas转spark无痛指南!⛵

    图片Pandas灵活强大,是数据分析必备工具库!但处理大型数据集时,需过渡到PySpark才可以发挥并行计算的优势。本文总结了Pandas与PySpark的核心功能代码段,掌握即可丝滑切换。...parquet 更改 CSV 来读取和写入不同的格式,例如 parquet 格式 数据选择 - 列 Pandas在 Pandas 中选择某些列是这样完成的: columns_subset = ['employee...(2, "seniority", seniority, True) PySpark在 PySpark 中有一个特定的方法withColumn可用于添加列:seniority = [3, 5, 2, 4,...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...,我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python

    8.2K72

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...df1.dropDuplicates().show() # 只要某一列有重复值,则去重 df1.dropDuplicates(subset=['FirstName']).show() # pandas...']) 12、 生成新列 # 数据转换,可以理解成列与列的运算 # 注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions...data_new=concat_df.withColumn("age_incremented",concat_df.age+1) data_new.show() # 3.某些列是自带一些常用的方法的

    10.5K10

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    1.1 缺失值处理 数据中的缺失值常常会影响模型的准确性,必须在预处理阶段处理。Pandas 提供了丰富的缺失值处理方法: 删除缺失值:可以删除包含缺失值的行或列。...中位数填充:适合存在极端值的数值特征。 众数填充:常用于分类特征。 1.2 数据标准化与归一化 在某些机器学习算法(如线性回归、KNN 等)中,数据的尺度差异会对模型表现产生影响。...常用的编码方法有: Label Encoding:将分类值转换为数字。 One-Hot Encoding:为每个分类值创建一个新的列。...3.1 自定义函数与 apply() 操作 Pandas 的 apply() 方法允许我们将自定义函数应用于 DataFrame 或 Series,这非常适合在数据处理中重复使用逻辑。...中的特定列进行自定义计算并生成新的列。

    23910

    Spark Extracting,transforming,selecting features

    ; 注意:如果你不知道目标列的上下限,你需要添加正负无穷作为你分割的第一个和最后一个箱; 注意:提供的分割顺序必须是单调递增的,s0 < s1 < s2.... < sn; from pyspark.ml.feature...在这个例子中,Imputer会替换所有Double.NaN为对应列的均值,a列均值为3,b列均值为4,转换后,a和b中的NaN被3和4替换得到新列: a b out_a out_b 1.0 Double.NaN...,类似R中的公式用于线性回归一样,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列...模型都有方法负责每个操作; 特征转换 特征转换是一个基本功能,将一个hash列作为新列添加到数据集中,这对于降维很有用,用户可以通过inputCol和outputCol指定输入输出列; LSH也支持多个...,如果输入未转换,那么会自动转换,这种情况下,哈希signature作为outputCol被创建; 一个用于展示每个输出行与目标行之间距离的列会被添加到输出数据集中; 注意:当哈希桶中没有足够候选数据点时

    21.9K41

    Apache Spark中使用DataFrame的统计和数学函数

    可以使用describe函数来返回一个DataFrame, 其中会包含非空项目数, 平均值, 标准偏差以及每个数字列的最小值和最大值等信息....若是正数意味则着有一个趋势: 一个变量增加, 另一个也增加. 若是负数则表示随着一个变量增加, 另一个变量趋于减小....id列与自身完全相关, 而两个随机生成的列则具有较低的相关值.. 4.交叉表(列联表) 交叉表提供了一组变量的频率分布表....5.出现次数多的项目 找出每列中哪些项目频繁出现, 这对理解数据集非常有用. 在Spark 1.4中, 用户将能够使用DataFrame找到一组列的频繁项目....如果你不能等待, 你也可以自己从1.4版本分支中构建Spark: https://github.com/apache/spark/tree/branch-1.4 通过与Spark MLlib更好的集成,

    14.6K60

    使用CDSW和运营数据库构建ML应用2:查询加载数据

    如果您用上面的示例替换上面示例中的目录,table.show()将显示仅包含这两列的PySpark Dataframe。...HBase表中的更新数据,因此不必每次都重新定义和重新加载df即可获取更新值。...视图本质上是针对依赖HBase的最新数据的用例。 如果您执行读取操作并在不使用View的情况下显示结果,则结果不会自动更新,因此您应该再次load()以获得最新结果。 下面是一个演示此示例。...首先,将2行添加到HBase表中,并将该表加载到PySpark DataFrame中并显示在工作台中。然后,我们再写2行并再次运行查询,工作台将显示所有4行。...结论 PySpark现在可用于转换和访问HBase中的数据。

    4.1K20

    Spark MLlib

    评估的性能如果达到要求,就用该模型来测试其他的数据;如果达不到要求,就要调整算法来重新建立模型,再次进行评估。如此循环往复,最终获得满意的经验来处理其他的数据。...相比而言,Spark 立足于内存计算,天然地适用于迭代式计算,能很好地与机器学习算法相匹配。...例如,DataFrame中的列可以是存储的文本、特征向量、真实标签和预测的标签等。 Transformer:翻译成转换器,是一种可以将一个DataFrame转换为另一个DataFrame的算法。...它可以把一个不包含预测标签的测试数据集DataFrame打上标签,转化成另一个包含预测标签的DataFrame。...技术上,Transformer实现了一个方法transform(),它通过附加一个或多个列将一个DataFrame转换为另一个DataFrame。

    6800

    【数据处理包Pandas】DataFrame对象的合并

    它们的主要区别: concat支持多个 DataFrame 对象的水平和垂直排放,即可以列合并也可以行合并;但与merge不同,它的合并不基于列值匹配。...join也是列合并,但它的合并不是基于列值匹配而是基于行索引/列索引的匹配,特定情况下与concat做列合并的效果相当。...ignore_index:如果为 True,则忽略附加的数据的索引,并为结果 DataFrame 分配一个新的整数索引。默认为 False。...可选值包括: ‘left’:保留左侧 DataFrame 中的所有行,并将右侧 DataFrame 中与左侧匹配的行合并到结果中。...suffixes:如果在合并过程中遇到了重叠的列名,则添加到重叠列名的后缀。 copy:如果为 False,则不复制数据。默认为 True。

    9500

    spark 数据处理 -- 数据采样【随机抽样、分层抽样、权重抽样】

    定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。 选择分层键列,假设分层键列为性别,其中男性与女性的比例为6:4,那么采样结果的样本比例也为6:4。...权重采样 选择权重值列,假设权重值列为班级,样本A的班级序号为2,样本B的班级序号为1,则样本A被采样的概率为样本B的2倍。...采样数 最终的采样数依赖于采样量计算方式,假设原始数据集样本数为100,如果选择数量方式,则最终数据集的采样数量与输入数量一致,如果选择比例方式,比例为0.8,则最终数据集的采样数量80。...https://www.codenong.com/44352986/ SMOT 过采样 针对类别不平衡的数据集,通过设定标签列、过采样标签和过采样率,使用SMOTE算法对设置的过采样标签类别的数据进行过采样输出过采样后的数据集...SMOTE算法使用插值的方法来为选择的少数类生成新的样本 欠采样 spark 数据采样 是均匀分布的嘛?

    6.4K10
    领券