首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas_VS_Excel条件统计人数与求和

yhd-pandas分类统计个数与和 ◆【解决问题】 在一次工作中遇到这样一个问题: 1.按条件“全年”统计人数与求和, 2.按“非全年”统计人数与求和 3.最后再统计合计人数与合计总和 如下明细表...pd file="D://yhd_python_home/yhd-pandas分类统计个数与和/pandas分类统计个数与和2.xlsx" df= pd.read_excel(file) df12=df...['Row_sum'] = df_final.apply(lambda x: x.sum(),axis=0) file_out="D://yhd_python_home/yhd-pandas分类统计个数与和.../pandas分类统计个数与和2_out.xlsx" df_final.to_excel(file_out) =====代码end===== 步骤1:读入数据 步骤2:读出条件“全年”(月数==12)...的数据,并分组groupby再用agg不再的数据列用不同的统计方式 步骤3:读出条件“非全年”(月数的数据,并分组groupby再用agg不再的数据列用不同的统计方式 步骤4:读出列“单位”

1.1K10

Pandas在Python面试中的应用与实战演练

Pandas作为Python数据分析与数据科学领域的核心库,其熟练应用程度是面试官评价候选者专业能力的重要依据。...本篇博客将深入浅出地探讨Python面试中与Pandas相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。一、常见面试问题1....数据聚合与分组面试官可能要求您展示如何进行数据分组、聚合计算。...误用索引:理解Pandas的索引体系,避免因索引操作不当导致的结果错误。过度使用循环:尽量利用Pandas的向量化操作替代Python原生循环,提高计算效率。...混淆合并与连接操作:理解merge()与concat()的区别,根据实际需求选择合适的方法。结语精通Pandas是成为优秀Python数据分析师的关键。

59600
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据可视化:认识Pandas

    Pandas简介 Pandas也是Python数据分析和实战的必备工具包之一,它提供了快速灵活的数据结构,简单的直观的处理关系型数据。可以方便的处理像Excel或者数据库中这样的结构化的数据。...未来的版本中将提高到3.6,在不管什么时候开始学习,可以选择使用最新版的Python和Pandas。...Pandas数据结构 Series 在Pandas中,最常用的就是数据结构就是Series和DataFrame。Series是带标签的一维数组,可以储存的数字、字符串等常见对象。...2 带标签的大小可变的二维异构表格 Pandas 所有数据结构的值都是可变的,数据结构的大小不都是可变的,Series 的长度不可改变,但是DataFrame里就可以插入新的列。...[3, '电影名称']) # 获取index是2 ,第2列的内容 print(df.iat[2, 1]) #代码运行结果: 无间道 無間道 2009 在选择或者查询数据的时候,肯定会带又一些条件,这时候我们可以直接选择某一个列

    28110

    Excel数据处理你是选择Vba还是Python?当然是选pandas!

    前言 本号之前已经分享过关于如何使用 Python 中的数据处理分析包 pandas 处理 Excel 的数据,本文继续分享一个小案例,此案例源于上周末帮朋友做的一个需求,并且是以 vba 编写解决...数据与需求 此案例的数据如下: - 每个开单人员的销售记录 - 描述为: 销售员"张三"(开单部门),把xxx货品(货品编码、货品名字)售出了5件(数量),此笔订单总价为2000元(价税合计) -...上述的括号部分就是表中的列标题 - 数据行中,有许多无效的行,只要 开单部门 列有名字,就是有效的行 此案例的数据对所有敏感数据进行随机生成替换 需求结果如下图: - 按 销售员、货品编码,汇总 货品数量和价税合计...但是,这样的需求如果在 Python 中,我们的处理效率可以提高多少呢?我使用 Python 的 pandas 包处理,在5分钟内搞定,并且代码有非常好的阅读性与扩展性。...这里先创建一个 ExcelWriter对象 - res.index.get_level_values(0) ,从分组结果中获得销售人员列,但这里的输出是带重复值的,因此我们需要使用 set 去重复 -

    3.5K30

    ApacheCN 数据科学译文集 20211109 更新

    7 可视化分布:直方图和密度图 8 可视化分布:经验累积分布函数和 q-q 图 9 一次可视化多个分布 10 可视化比例 11 可视化嵌套比例 12 可视化两个或多个定量变量之间的关联 13 可视化自变量的时间序列和其他函数...24 使用较大的轴标签 25 避免线条图 26 不要走向 3D 27 了解最常用的图像文件格式 28 选择合适的可视化软件 29 讲述一个故事并提出一个观点 30 带注解的参考书目 技术注解 参考 TutorialsPoint...、Pandas,Matplotlib 和 Seaborn 的可视化 Pandas 学习手册中文第二版 零、前言 一、Pandas 与数据分析 二、启动和运行 Pandas 三、用序列表示单变量数据 四...、R 与 Pandas 的比较 十一、机器学习简介 NumPy 和 Pandas 数据分析实用指南 零、前言 一、配置 Python 数据分析环境 二、探索 NumPy 三、NumPy 数组上的运算...虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)

    4.9K30

    特征锦囊:一文介绍特征工程里的卡方分箱,附代码实现

    卡方分布表 这个概念貌似在大一的时候就有接触过了,可以知道横轴是分位数,纵轴是自由度,然后类似于Python的loc方法,定位到的值就是卡方值了。...如果想要在Python里生成卡方分布表,可以尝试下面的代码: # 用Python生成卡方分布临界值表 import numpy as np import pandas as pd from scipy.stats...组别 有效 无效 合计 有效率% A组 19 24 43 44.2% B组 34 10 44 77.3% 合计 53 34 87 60.9% 解: 这道题其实就是套公式,从上面我了解到要计算卡方值可以有这个公式...它主要包括两个阶段:初始化阶段和自底向上的合并阶段。 1、初始化阶段: 首先按照属性值的大小进行排序(对于非连续特征,需要先做数值转换,比如转为坏人率,然后排序),然后每个属性值单独作为一组。...(3)不断重复(1)和(2)直到计算出的卡方值都不低于事先设定的阈值,或者分组数达到一定的条件(如最小分组数5,最大分组数8)。

    2.8K20

    玩爆你的数据报表之存储过程编写(上)

    和平大使 内连接、外连接 你真的会玩SQL吗?三范式、数据完整性 你真的会玩SQL吗?查询指定节点及其所有父节点的方法 你真的会玩SQL吗?让人晕头转向的三值逻辑 你真的会玩SQL吗?...存储过程的编写最重要的是思路清晰,能知道自己想要的结果和写出的SQL能运行出什么样的结果,这需要基本功非常扎实,过程中会用到联表查询、更新、临时表、数据聚合、行列转换、简单的函数……等知识。...年后的 ”销售面积” 83600.00 ,在这里你会发现229900和产品1的项目合计的“累计销售面积”相同,这个是正确的,项目合计中的累积面积并不等于 以前年+当年+以后年,请理解一下这个滑动聚合概念...B统计各产品取所有的合计 放入表C 从表C统计累积销售面积、累积销售面积比例,累积销售金额 更新表C 从表C 列转行,转换后的表只有 产品、统计类型、日期,值4列;(每个产品对应的0-12、13 月对应的值...以上数据中我们的 累积销售面积、累积销售面积比例,累积销售金额三项 之前都用0代替,现在我们来统计。

    1.7K80

    统计师的Python日记【第5天:Pandas,露两手】

    本文是【统计师的Python日记】第5天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型; 第2天学习了python的函数、循环和条件、类。...第4天初步了解了Pandas这个库 原文复习(点击查看): 第1天:谁来给我讲讲Python?...数据导出 ---- 统计师的Python日记【第5天:Pandas,露两手】 前言 根据我的Python学习计划: Numpy → Pandas → 掌握一些数据清洗、规整、合并等功能 → 掌握类似与SQL...这是一组有缺失值的数据,现在来加总: ? 还可以累积加总: ? 关于缺失值,在后面还要专门学习(二、缺失值)。 2....除了read_csv,还有几种读取方式: 函数 说明 read_csv 读取带分隔符的数据,默认分隔符为逗号 read_table 读取带分隔符的数据,默认分隔符为制表符 read_fwf 读取固定宽格式数据

    3K70

    Python3分析CSV数据

    需要在逗号前设定行筛选条件,在逗号后设定列筛选条件。 例如,loc函数的条件设置为:Supplier Name列中姓名包含 Z,或者Cost列中的值大于600.0,并且需要所有的列。...要运行这个脚本,在命令行中输入以下命令,然后按回车键: python 8csv_reader_counts_for_multiple_files.py "C:\Users\Clinton\Desktop...如果你需要平行连接数据,那么就在concat 函数中设置axis=1。除了数据框,pandas 中还有一个数据容器,称为序列。你可以使用同样的语法去连接序列,只是要将连接的对象由数据框改为序列。...有时候,除了简单地垂直或平行连接数据,你还需要基于数据集中的关键字列的值来连接数据集。pandas 提供了类似SQL join 操作的merge 函数。...Python 的另一个内置模块NumPy 也提供了若干函数来垂直或平行连接数据。通常是将NumPy 导入为np。

    6.7K10

    Pandas 概览

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...数据结构 维数 名称 描述 1 Series 带标签的一维同构数组 2 DataFrame 带标签的,大小可变的,二维异构表格 为什么有多个数据结构? Pandas 数据结构就像是低维数据的容器。...有了稳定的资金来源,就确保了 Pandas,这一世界级开源项目的成功,为本项目捐款也更有保障。 项目监管 自 2008 年以来,Pandas 沿用的监管流程已正式编纂为项目监管文档。

    1.4K10

    你们都用Python实现了哪些办公自动化?

    1、自动化office,包括对excel、word、ppt、email、pdf等常用办公场景的操作, python都有对应的工具库,可以很方便的调用。 提供一些常见的核心库供大家参考使用。...(全能) pdf: pypdf2、pdfminer、pdfplumbe picture: PIL 学这些会撸python是前提,对于小白来说自学也不是件容易的事,需要花相当的时间去适应python的语法逻辑...image.png 接下来实操演练: 1、准备一个表格 image.png 2、对表格进行各种操作 导入xlwings库,命名为xw import xlwings as xw  建立与活动工作簿的连接...连接表三 sht_3 = wb.sheets['表三']   查看A1单元格的宽和高 # 查看列宽 sht_3.range('A1').column_width  8.11 # 查看行高 sht_3...如果对python语法还不熟悉,最好先把框架熟悉一遍,多做些练习。 今天的分享就到这里啦~ ​

    94890

    实践应用|Python自动化连接FTP批量下载指定文件

    进行数据处理操作 处理步骤: 读取数据合并的时候同步按照既定条件进行数据筛选 选择需要用到的字段 原始数据长啥样?...考虑到我们一次性处理的文件数不止一个,所以在读取原始日志后可以先把条件筛选工作做了再合并。...df['@timestamp'] = df['@timestamp'].str.split(' ').str[0] 文件格式为str(df.iloc[i][1])+'.bd' 3、连接FTP Python...中默认安装的ftplib模块,常见的函数列举如下: 参考文档:https://docs.python.org/3/library/ftplib.html  **ftp登录连接** from ftplib...ftp连接已关闭 FTP数据下载消耗时长:395.89 秒 正在进行数据转化 共18个文件转化失败,共63个文件转化完成   本次累积消耗时长:407.21 秒

    1.1K20

    AI数据分析:用deepseek进行贡献度分析(帕累托法则)

    数据排序:将数据按照某个特定的标准(如销售额、成本、频率等)进行排序。 计算总和:计算所有项目的总和。 确定累积百分比:对于每个项目,计算累积百分比。...识别关键因素:识别累积百分比达到80%的那些关键因素(原因)。这通常意味着这些因素是最重要的贡献者。...分析和决策:根据帕累托分析的结果,分析关键因素对整体效益的影响,并做出相应的决策 任务:计算下面Excel表格中用活用户的贡献度 在deepseek中输入提示词: 你是一个Python编程专家,要完成一个...Python脚本编写的任务,具体步骤如下: 读取Excel文件"F:\AI自媒体内容\AI行业数据分析\poetop50bots中文翻译.xlsx", 用matplotlib绘制一个柱状图: 从A列“热门...\simhei.ttf 保存图片到文件夹“F:\AI自媒体内容\AI行业数据分析”,图片标题为:poetop50bots贡献度; 显示图片; 注意:每一步都输出信息到屏幕 源代码: import pandas

    55810

    数据分析 | 一文了解数据分析必须掌握的库-Pandas

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...数据结构 维数 名称 描述 1 Series 带标签的一维同构数组 2 DataFrame 带标签的,大小可变的,二维异构表格 为什么有多个数据结构? Pandas 数据结构就像是低维数据的容器。...有了稳定的资金来源,就确保了 Pandas,这一世界级开源项目的成功,为本项目捐款也更有保障。 项目监管 自 2008 年以来,Pandas 沿用的监管流程已正式编纂为项目监管文档。

    1.1K10

    Pandas 概览

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...数据结构 维数 名称 描述 1 Series 带标签的一维同构数组 2 DataFrame 带标签的,大小可变的,二维异构表格 为什么有多个数据结构? Pandas 数据结构就像是低维数据的容器。...有了稳定的资金来源,就确保了 Pandas,这一世界级开源项目的成功,为本项目捐款也更有保障。 项目监管 自 2008 年以来,Pandas 沿用的监管流程已正式编纂为项目监管文档。

    1.2K00

    Python数据透视表与透视分析:深入探索数据关系

    在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...1、导入必要的库:首先,我们需要导入所需的库,包括pandas和numpy。...import pandas as pd import numpy as np 2、读取数据:接下来,我们需要读取待处理的数据集。...该函数的主要参数包括:index(用于分组的列)、columns(用于创建列的列)、values(用于聚合计算的列)和aggfunc(聚合函数,默认为求平均值)。...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。

    24210

    数据分析篇 | Pandas 概览

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...数据结构 维数 名称 描述 1 Series 带标签的一维同构数组 2 DataFrame 带标签的,大小可变的,二维异构表格 为什么有多个数据结构? Pandas 数据结构就像是低维数据的容器。...有了稳定的资金来源,就确保了 Pandas,这一世界级开源项目的成功,为本项目捐款也更有保障。 项目监管 自 2008 年以来,Pandas 沿用的监管流程已正式编纂为项目监管文档。

    1.3K20
    领券