首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【数据处理包Pandas】数据载入与预处理

目录 一、数据载入 二、数据清洗 (一)Pandas中缺失值的表示 (二)与缺失值判断和处理相关的方法 三、连续特征离散化 四、哑变量处理 准备工作 导入 NumPy 库和 Pandas 库。...中缺失值的表示 Pandas 表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用 Python 中的None,Pandas 会自动把None转变成NaN。...isnull():判断每个元素是否是缺失值,会返回一个与原对象尺寸相同的布尔性 Pandas 对象 notnull():与isnull()相反 dropna():返回一个删除缺失值后的数据对象 fillna...duplicates方法返回一个布尔值的 series ,反映每一行是否与之前的行重复。...默认为 ‘first’,表示保留第一个出现的重复值;‘last’ 表示保留最后一个出现的重复值;False 表示删除所有重复值。 inplace:可选参数,指定是否在原地修改 DataFrame。

11810

pandas处理字符串方法汇总

内置的方法存在一个问题,不能处理缺失值: b = ["python","java","c", None] # 存在缺失值 b ['python', 'java', 'c', None] # [len(...0 Python Gudio 1991 3 Pandas Mckinney 2008 检查字符串是否以指定元素开始: df["Language"].str.startswith("J") # 是否以...1 Java Gosling 1990 检查字符串是否以指定元素结尾: df["Language"].str.endswith("8") # 是否以8结束 0 False 1 False...Python Gudio 1991 1 Java Gosling 1990 2 None None None 3 Pandas Mckinney 2008 指定最大列属性值:n=1表示分割split之后的最大列索引值为...检查字符串是否只由大写字母组成 str.istitle:检查所有单词首字母是否大写,其他字母是否是小写组成 str.startswith:检查字符串是否以指定字符开始 str.endswith:检查字符串是否以指定字符结束

46120
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    针对SAS用户:Python数据分析库pandas

    一个例子是使用频率和计数的字符串对分类数据进行分组,使用int和float作为连续值。此外,我们希望能够附加标签到列、透视数据等。 我们从介绍对象Series和DataFrame开始。...大部分SAS自动变量像_n_ 使用1作为索引开始位置。SAS迭代DO loop 0 to 9结合ARRAY产生一个数组下标超出范围错误。 下面的SAS例子,DO循环用于迭代数组元素来定位目标元素。...检查 pandas有用于检查数据值的方法。DataFrame的.head()方法默认显示前5行。.tail()方法默认显示最后5行。行计数值可以是任意整数值,如: ?...SAS排除缺失值,并且利用剩余数组元素来计算平均值。 ? 缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...这之后是一个数据步骤,为col3 - col5迭代数组x ,并用&col6_mean替换缺失值。 SAS/Stat具有用于使用这里描述的一系列方法来估计缺失值的PROC MI。

    12.1K20

    python pandas dataframe函数_Python Pandas dataframe.ne()用法及代码示例

    参考链接: 带有Pandas的Python:带有示例的DataFrame教程 Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统。...Pandas是其中的一种,使导入和分析数据更加容易。  Pandas dataframe.ne()函数使用常量,序列或其他按元素排列的 DataFrame 检查 DataFrame 元素的不等式。...如果比较中的两个值不相等,则返回true;否则,返回false。  ... level:在一个级别上广播,在传递的MultiIndex级别上匹配索引值  返回:结果:DataFrame  范例1:采用ne()用于检查序列和 DataFrame 之间是否不相等的函数。  ...范例2:采用ne()用于检查两个datframe是否不相等的函数。一个 DataFrame 包含NA值。

    1.6K00

    Pandas全景透视:解锁数据科学的黄金钥匙

    底层使用C语言:Pandas的许多内部操作都是用Cython或C语言编写的,Cython是一种Python的超集,它允许将Python代码转换为C语言代码,从而提高执行效率。...如果传入的是一个字典,则 map() 函数将会使用字典中键对应的值来替换 Series 中的元素。如果传入的是一个函数,则 map() 函数将会使用该函数对 Series 中的每个元素进行转换。...inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。limit:int, default None。...如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。...如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)downcast:dict, default is None,字典中的项为,为类型向下转换规则。

    11710

    Pandas 2.2 中文官方教程和指南(一)

    conda create -c conda-forge -n name_of_my_env python pandas 这将创建一个仅安装了 Python 和 pandas 的最小环境。...检查您遇到的错误是否在上一个版本中已修复。 开发版本通常每天上传到 anaconda.org 的 PyPI 注册表的 scientific-python-nightly-wheels 索引中。...安装 pandas 的开发版本 安装开发版本是最快的方式: 尝试一个将在下一个版本中发布的新功能(即,最近合并到主分支的拉取请求中的功能)。 检查您遇到的错误是否自上次发布以来已修复。...=,个具有与原始DataFrame相同行数的布尔值(True 或 False)的 pandas Series。...验证的一种方法是检查形状是否发生了变化: In [22]: age_no_na.shape Out[22]: (714, 12) 到用户指南 有关缺失值的更多专用函数,请参阅用户指南中关于处理缺失数据的部分

    97110

    python数据分析——数据预处理

    在做数据分析时,常常需要了解数据元素的特征,describe()函数可以用于描述数据统计量特征 二、缺失值处理 缺失值检查 isnull() 在 pandas 库中,isnull() 函数用于检查数据是否为空值...查找重复值 duplicated() Python的duplicated函数是pandas库中的一个函数,用于判断DataFrame或Series中的元素是否重复。...level:如果DataFrame具有多层索引,则指定要删除的索引级别。默认为None,表示删除所有级别。 inplace:是否在原地修改DataFrame。...inplace:指示是否在原DataFrame上进行修改。默认为False,表示返回一个新的DataFrame。 verify_integrity:指示是否在设置完成后检查新的索引是否唯一。...level:如果DataFrame具有多层索引,则指定要删除的索引级别。默认为None,表示删除所有级别。 inplace:是否在原地修改DataFrame。

    12710

    数据科学 IPython 笔记本 7.13 向量化字符串操作

    Python 的一个优点是它在处理和操作字符串数据方面相对容易。Pandas 构建于此之上,并提供了一套全面的向量化字符串操作,它们成为处理(阅读“清理”部分)实际数据时所需的重要部分。...Pandas 字符串方法的表格 如果你对 Python 中的字符串操作有很好的理解,那么大多数 Pandas 字符串语法都足够直观,只需列出一个可用方法表即可。...使用正则表达式的方法 此外,有几种方法可以接受正则表达式,来检查每个字符串元素的内容,并遵循 Python 内置的re模块的一些 API 约定: 方法 描述 match() 在每个元素上调用re.match...例如,我们可以提取每个元素的名字,通过在每个元素的开头要求一组连续字符: monte.str.extract('([A-Za-z]+)', expand=False) ''' 0 Graham...True和False值组成的布尔DataFrame,指示该成分是否出现在列表中: import re spice_df = pd.DataFrame(dict((spice, recipes.ingredients.str.contains

    1.6K20

    Python 全栈 191 问(附答案)

    集合内的元素可以为任意类型吗? 什么是可哈希类型?举几个例子 求集合的并集、差集、交集、子集的方法? 怎么找出字典的最大键? 如何求出字典的最大值? 如何快速判断一个字符串中所有字符是否唯一?...给定 n 个集合,如何使用 max 函数求出包含元素最多的集合? 找出字典前 n 个最大值对应的键 怎么一行代码合并两个字典?...求两个特征的相关系数 如何找出 NumPy 中的缺失值、以及缺失值的默认填充 Pandas 的 read_csv 30 个常用参数总结,从基本参数、通用解析参数、空值处理、时间处理、分块读入、格式和压缩等...性能比较 set_index, reset_index, reindex 使用总结 数据预览操作:info 和 describe 使用总结 Pandas 数据 null 值检查 空值补全,使用列的平均值...Pandas 使用 apply(type) 做类型检查 Pandas 使用标签和位置选择数据的技巧 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。

    4.2K20

    初学者的10种Python技巧

    假设我们已经决定对确定植物是否为兰花感兴趣。对于单行-if,我们从测试条件为真时要输出的值开始。 此代码将单行(如果具有列表理解)组合以输出1(其中植物是兰花),否则输出0。...#8 —将lambda应用于DataFrame列 pandas DataFrame是一种可以保存表格数据的结构,例如Excel for Python。...假设我们有一个有关温室植物的信息表: import pandas as pd data = pd.DataFrame({'plant': greenhouse, 'height_(cm)': [50,...函数sunny_shelf接受两个参数作为其输入-用于检查“full sun”的列和用于检查“ bach”的列。函数输出这两个条件是否都成立。...根据 PEP8,Python样式指南: 包装长行的首选方法是在括号,方括号和花括号内使用Python的隐含行连续性。

    2.9K20

    十分钟入门 Pandas

    通过纳入大量库和一些标准数据模型,提供了高效操作大型数据集所需工具; 安装 pip install pandas 数据类型 Series 定义 一维的数组类型,其中每个元素有各自标签;可当作一个由带标签元素组成的...(),为DataFrame中的每一行返回一个产生一个命名元祖的迭代器,元祖的第一个元素将是行的相应索引值,剩余的值是行值 print('itertuples:') for row in dataFrame.itertuples...# 6、cat(sep=' ') 使用给定的分隔符连接系列/索引元素。 # 7、get_dummies() 返回具有单热编码值的数据帧(DataFrame)。...# 17、islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值 # 18、isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值 # 19、isnumeric...() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值。

    3.7K30

    Pandas图鉴(二):Series 和 Index

    默认情况下,当创建一个没有索引参数的Series(或DataFrame)时,它初始化为一个类似于Python的range()的惰性对象。...Pandas没有像关系型数据库那样的 "唯一约束"(该功能[4]仍在试验中),但它有一些函数来检查索引中的值是否唯一,并以各种方式删除重复值。 有时,但一索引不足以唯一地识别某行。...df.merge--可以用名字指定要合并的列,不管这个列是否属于索引。 按值查找元素 考虑以下Series对象: 索引提供了一种快速而方便的方法,可以通过标签找到一个值。但是,通过值来寻找标签呢?...不要对具有非唯一索引的系列使用算术运算。 比较 对有缺失值的数组进行比较可能很棘手。...实际上,如果组内元素不是连续存储的,它也同样能工作,所以它更接近collections.defaultdict而不是itertools.groupby。而且它总是返回一个没有重复的索引。

    33820

    十分钟入门Pandas

    通过纳入大量库和一些标准数据模型,提供了高效操作大型数据集所需工具; 安装 pip install pandas 数据类型 Series 定义 一维的数组类型,其中每个元素有各自标签;可当作一个由带标签元素组成的...(),为DataFrame中的每一行返回一个产生一个命名元祖的迭代器,元祖的第一个元素将是行的相应索引值,剩余的值是行值 print('itertuples:') for row in dataFrame.itertuples...# 6、cat(sep=' ') 使用给定的分隔符连接系列/索引元素。 # 7、get_dummies() 返回具有单热编码值的数据帧(DataFrame)。...# 17、islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值 # 18、isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值 # 19、isnumeric...() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值。

    4K30

    使用Pandas&NumPy进行数据清洗的6大常用方法

    contains()方法与Python内建的in关键字一样,用于发现一个个体是否发生在一个迭代器中。 使用的替代物是一个代表我们期望的出版社地址字符串。...在一些实例中,使用一个定制的函数到DataFrame的每一个元素将会是很有帮助的。...pandas的applyma()方法与内建的map()函数相似,并且简单的应用到一个DataFrame中的所有元素上。 让我们看一个例子。...这里我们可以再次使用pandas的.str()方法,同时我们也可以使用applymap()将一个python callable映射到DataFrame中的每个元素上。...在这个函数中,检验元素中是否有一个(或者[。 基于上面的检查,函数返回相应的值。最后,applymap()函数被用在我们的对象上。现在DataFrame就看起来更干静了。

    3.5K10
    领券