首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

手把手教你实现图象边缘检测!

一、边缘检测的概念 边缘检测是图像处理与计算机视觉中极为重要的一种分析图像的方法,至少在我做图像分析与识别时,边缘是我最喜欢的图像特征。边缘检测的目的就是找到图像中亮度变化剧烈的像素点构成的集合,表现出来往往是轮廓。如果图像中边缘能够精确的测量和定位,那么,就意味着实际的物体能够被定位和测量,包括物体的面积、物体的直径、物体的形状等就能被测量。在对现实世界的图像采集中,有下面4种情况会表现在图像中时形成一个边缘。 深度的不连续(物体处在不同的物平面上); 表面方向的不连续(如正方体的不同的两个面); 物体材

07

简单3步,轻松学会图象边缘检测

一、边缘检测的概念 边缘检测是图像处理与计算机视觉中极为重要的一种分析图像的方法,至少在我做图像分析与识别时,边缘是我最喜欢的图像特征。边缘检测的目的就是找到图像中亮度变化剧烈的像素点构成的集合,表现出来往往是轮廓。如果图像中边缘能够精确的测量和定位,那么,就意味着实际的物体能够被定位和测量,包括物体的面积、物体的直径、物体的形状等就能被测量。在对现实世界的图像采集中,有下面4种情况会表现在图像中时形成一个边缘。 深度的不连续(物体处在不同的物平面上); 表面方向的不连续(如正方体的不同的两个面); 物体材

08

AI 技术讲座精选:机器学习中梯度下降算法(包括其变式算法)简介

前 言 无论是要解决现实生活中的难题,还是要创建一款新的软件产品,我们最终的目标都是使其达到最优状态。作为一名计算机科学专业的学生,我经常需要优化各种代码,以便提高其整体的运行速度。 一般情况下,最优状态会伴随问题的最佳解决方案。如果阅读近期发表的关于优化问题的文章的话,你会发现,优化问题在现实生活中扮演着非常重要的作用。 机器学习中的优化问题与我们刚刚提到的内容有些许不同。通常情况下,在优化的过程中,我们非常清楚数据的状态,也知道我们想要优化哪些区域。但是,在机器学习中,我们本就对“新数据”一无所知,更不

04

一文清晰讲解机器学习中梯度下降算法(包括其变式算法)

本篇文章向大家介绍梯度下降(Gradient Descent)这一特殊的优化技术,我们在机器学习中会频繁用到。 前言 无论是要解决现实生活中的难题,还是要创建一款新的软件产品,我们最终的目标都是使其达到最优状态。作为一名计算机科学专业的学生,我经常需要优化各种代码,以便提高其整体的运行速度。 一般情况下,最优状态会伴随问题的最佳解决方案。如果阅读近期发表的关于优化问题的文章的话,你会发现,优化问题在现实生活中扮演着非常重要的作用。 机器学习中的优化问题与我们刚刚提到的内容有些许不同。通常情况下,在优化的

02

Jacobin和Hessian矩阵

有时我们需要计算输入和输出都为向量和函数的所有偏导数。包含所有这样的偏导数的矩阵被称为Jacobian矩阵。具体来说,如果我们有一个函数 , 的Jacobian矩阵 定义为 。有时,我们也对导数的导数感兴趣,即二阶导数(second derivative)。例如,有一个函数 , 的一阶导数(关于 )关于 的导数记为 为 。二阶导数告诉我们,一阶导数(关于 )关于 的导数记为 。在一维情况下,我们可以将 为 。二阶导数告诉我们,一阶导数如何随着输入的变化而改变。它表示只基于梯度信息的梯度下降步骤是否会产生如我们预期那样大的改善,因此它是重要的,我们可以认为,二阶导数是对曲率的衡量。假设我们有一个二次函数(虽然实践中许多函数都是二次的,但至少在局部可以很好地用二次近似),如果这样的函数具有零二阶导数,那就没有曲率,也就是一条完全平坦的线,仅用梯度就可以预测它的值。我们使用沿负梯度方向下降代销为 的下降步,当该梯度是1时,代价函数将下降 。如果二阶导数是正的,函数曲线是向上凹陷的(向下凸出的),因此代价函数将下降得比 少。

02

图像处理算法 面试题

其主要用于边缘检测,在技术上它是以离散型的差分算子,用来运算图像亮度函数的梯度的近似值, Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。Sobel算子包含两组3×3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。缺点是Sobel算子并没有将图像的主题与背景严格地区分开来,换言之就是Sobel算子并没有基于图像灰度进行处理,由于Sobel算子并没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

03

ICCV2023论文精选!从微分方程角度理解self-attention机制的底层逻辑!

自注意力机制(self-attention)广泛应用于人工智能的各个领域,成功地提升了不同模型的性能。然而,目前对这种机制的解释主要基于直觉和经验,而对于自注意力机制如何帮助性能的直接建模仍然缺乏。为了缓解这个问题,在本文中,基于残差神经网络的动力系统视角,我们首先展示了在常微分方程(ODEs)的高精度解中存在的本质刚度现象(SP)也广泛存在于高性能神经网络(NN)中。因此,NN在特征层面上测量SP的能力是获得高性能的必要条件,也是影响NN训练难度的重要因素。类似于在求解刚性ODEs时有效的自适应步长方法,我们展示了自注意力机制也是一种刚度感知的步长适配器,它可以通过细化刚度信息的估计和生成自适应的注意力值,增强模型测量内在SP的表征能力,从而提供了一个关于为什么和如何自注意力机制可以提高模型性能的新理解。这种新的视角也可以解释自注意力机制中的彩票假设,设计新的表征能力的定量指标,并启发了一种新的理论启发式方法,StepNet。在几个流行的基准数据集上的大量实验表明,StepNet可以提取细粒度的刚度信息并准确地测量SP,从而在各种视觉任务中取得显著的改进。

04
领券