首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 2.2 中文官方教程和指南(一)

Miniconda 允许您创建一个相对于 Anaconda 更小、独立的 Python 安装,并使用Conda包管理器安装其他包并为您的安装创建虚拟环境。Miniconda 的安装说明在这里。...Miniconda 允许您创建一个最小的、独立的 Python 安装,与 Anaconda 相比,并使用Conda包管理器安装其他包并为您的安装创建虚拟环境。...import sys sys.path 您可能遇到此错误的一种方式是,如果您的系统上有多个 Python 安装,并且您当前使用的 Python 安装中没有安装 pandas。...Miniconda 允许您创建一个最小、独立的 Python 安装,与 Anaconda 相比,使用[Conda](https://conda.io/en/latest/)包管理器安装额外的包并为您的安装创建虚拟环境...记住 通过read_*函数支持从许多不同文件格式或数据源将数据导入 pandas。 通过不同的to_*方法提供了将数据导出到 pandas 的功能。

95810

Pandas 25 式

操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...用多个文件建立 DataFrame ~ 按行 本段介绍怎样把分散于多个文件的数据集读取为一个 DataFrame。 比如,有多个 stock 文件,每个 CSV 文件里只存储一天的数据。...使用 Python 内置的 glob 更方便。 ? 把文件名规则传递给 glob(),这里包括通配符,即可返回包含所有合规文件名的列表。...调用 read_csv() 函数读取生成器表达式里的每个文件,把读取结果传递给 concat() 函数,然后合并为一个 DataFrame。...用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?

8.4K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...用多个文件建立 DataFrame ~ 按行 本段介绍怎样把分散于多个文件的数据集读取为一个 DataFrame。 比如,有多个 stock 文件,每个 CSV 文件里只存储一天的数据。...使用 Python 内置的 glob 更方便。 ? 把文件名规则传递给 glob(),这里包括通配符,即可返回包含所有合规文件名的列表。...调用 read_csv() 函数读取生成器表达式里的每个文件,把读取结果传递给 concat() 函数,然后合并为一个 DataFrame。...用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?

    7.2K20

    懂Excel轻松入门Python数据分析包pandas(十九):文本条件统计

    此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中除了 Vlookup 函数,一系列条件统计函数(sumif、countif、maxif)...这需要我们在 Excel 中有很多方式完成,比如透视表或函数公式,下面简单列出函数公式的做法: - 简单使用 countifs 即可 > 这里不再单独使用 countif 了,管他是否只有一个条件,统一用...,那么此需求即可迎刃而解: - 行2:由于 住址 列是字符串类列,使用 .str 可访问字符串类型列的各种方法 - contains 判断列中是否包含指定内容。...一次解决所有问题 以上 pandas 的做法主要有以下问题: - 不能用通配符表达不同的文本规则,只能用不同的方法,我记不住这么多方法呀 - 不能忽略大小写(实际上面的需求,pandas 的结果更合理

    1.4K10

    懂Excel轻松入门Python数据分析包pandas(十九):文本条件统计

    > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中除了 Vlookup 函数,一系列条件统计函数(sumif、countif、maxif)...这需要我们在 Excel 中有很多方式完成,比如透视表或函数公式,下面简单列出函数公式的做法: - 简单使用 countifs 即可 > 这里不再单独使用 countif 了,管他是否只有一个条件,统一用...,那么此需求即可迎刃而解: - 行2:由于 住址 列是字符串类列,使用 .str 可访问字符串类型列的各种方法 - contains 判断列中是否包含指定内容。...一次解决所有问题 以上 pandas 的做法主要有以下问题: - 不能用通配符表达不同的文本规则,只能用不同的方法,我记不住这么多方法呀 - 不能忽略大小写(实际上面的需求,pandas 的结果更合理

    1.2K20

    你希望早点知道哪些 Python 功能?

    在本文中,我们将介绍几个您之前可能不知道的 Python 秘密功能。 以下是我们必须知道的一些隐藏的Python功能- Pandas_ml Pandas是最著名的Python机器学习库之一。...但是您必须将列表中的多个项目替换为单个分配。你会怎么做?这是切片分配派上用场的时候。Python 允许您仅用一行将列表中的部分替换为您想要的任何内容。...列出 Python 中的推导 列表理解是Python最强大的技术之一。它有助于通过使用简洁的语法从一个列表派生另一个列表。当您想要过滤列表中的项目或对其应用函数时,列表推导式会派上用场。...在代码中使用表情符号 你知道 Python 提供了一个模块,允许你在字符串中添加表情符号吗?是的,你没看错!要包含表情符号,您可以使用表情符号模块或 Unicode。...幸运的是,Python 允许您一个接一个地使用比较运算符,如下图所示。 A > B > C 这是由于“操作员偏好和关联性”。它在表达式中使用,当有多个具有不同优先级的运算符时很有用。

    55830

    Pandas 学习手册中文第二版:1~5

    演示 该过程的倒数第二个步骤是通常以报告或演示文稿的形式向他人展示您的发现。 您将需要为您的解决方案创建一个有说服力的详尽说明。...正如我们将首先使用Series然后使用DataFrame所看到的那样,pandas 将结构化数据组织为一个或多个数据列,每个列都是一个特定的数据类型,然后是零个或多个数据行的序列。...序列与 NumPy 数组相似,但是它的不同之处在于具有索引,该索引允许对项目进行更丰富的查找,而不仅仅是从零开始的数组索引值。 以下从 Python 列表创建一个序列。: 输出包括两列信息。...解决方案是用不同的方式表达方程式,在每个逻辑条件前后加上括号,并为和/或(|和&)使用不同的运算符: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KSRnuuLY-1681365384127...我们将研究的技术如下: 使用 NumPy 函数的结果 使用包含列表或 Pandas Series对象的 Python 字典中的数据 使用 CSV 文件中的数据 在检查所有这些内容时,我们还将检查如何指定列名

    8.3K10

    保护 Amazon S3 中托管数据的 10 个技巧

    2- 验证允许策略的主体中未使用通配符 所有安全策略都必须遵循最小特权原则。为此,我们将在建立权限时避免使用通配符“*”,并且每次我们要建立对存储桶的权限时,我们将指定“主体”必须访问该资源。...它可以是一个 IP 地址范围、一个 AWS 账户、一个 VPC……但永远不会使用通配符。...3 – 验证允许策略操作中未使用通配符 遵循最小权限原则,我们将使用我们授予访问权限的身份必须执行的“操作”来验证允许策略是否正确描述。...3 个不同的可用区中。...这并不能防止意外删除导致您的数据消失,我们有不同的选择来避免这种情况: 对象版本控制:允许您添加删除标记,但不能永久删除或覆盖对象。

    1.5K20

    8个Python高效数据分析的技巧。

    1 一行代码定义List 定义某种列表时,写For 循环过于麻烦,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。下面是使用For循环创建列表和用一行代码创建列表的对比。...Lambda表达式是你的救星!Lambda表达式用于在Python中创建小型,一次性和匿名函数对象, 它能替你创建一个函数。...Concat允许用户在表格下面或旁边追加一个或多个DataFrame(取决于您如何定义轴)。 ? Merge将多个DataFrame合并指定主键(Key)相同的行。 ?...但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ? 7 Pandas Apply Apply是为Pandas Series而设计的。...使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2.3K10

    8 个 Python 高效数据分析的技巧

    一行代码定义List 定义某种列表时,写For 循环过于麻烦,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。 ? 下面是使用For循环创建列表和用一行代码创建列表的对比。...回想一下Pandas中的shape df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...Concat允许用户在表格下面或旁边追加一个或多个DataFrame(取决于您如何定义轴)。 ? Merge将多个DataFrame合并指定主键(Key)相同的行。 ?...但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ? Pandas Apply pply是为Pandas Series而设计的。...使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2.7K20

    【Python篇】详细学习 pandas 和 xlrd:从零开始

    DataFrame:一个二维表格,类似于电子表格或数据库中的表,具有行和列。 Series:一个一维数组,类似于表格中的一列数据。 2.2 什么是 xlrd?...这在处理多个来源的数据时尤其有用。 7.2 代码示例:读取并合并多个 Excel 文件 假设你有多个 Excel 文件,它们有相同的结构,现在我们需要将这些文件合并到一个 DataFrame 中。...pd.concat(df_list, ignore_index=True):将所有读取的 DataFrame 合并为一个大的 DataFrame,ignore_index=True 表示忽略原来的行索引...groupby 是 pandas 中的一个强大函数,常用于分组统计。...以上就是关于【Python篇】详细学习 pandas 和 xlrd:从零开始的内容啦,各位大佬有什么问题欢迎在评论区指正,您的支持是我创作的最大动力!❤️

    31210

    这 8 个 Python 技巧让你的数据分析提升数倍!

    ,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。...回想一下Pandas中的shape df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...在哪个时间跟踪哪一个最适合使用可能很困难,所以让我们回顾一下。 Concat允许用户在表格下面或旁边追加一个或多个DataFrame(取决于您如何定义轴)。 ?...Merge将多个DataFrame合并指定主键(Key)相同的行。 ? Join,和Merge一样,合并了两个DataFrame。但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...Apply将一个函数应用于指定轴上的每一个元素。使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...我们可以用多种不同的方式构建一个DataFrame,但对于少量的值,通常将其指定为 Python 字典会很方便,其中键是列名,值是数据。...日期功能 本节将提到“日期”,但时间戳的处理方式类似。 我们可以将日期功能分为两部分:解析和输出。在Excel电子表格中,日期值通常会自动解析,但如果您需要,还有一个 DATEVALUE 函数。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...pandas DataFrames 有一个 merge() 方法,它提供了类似的功能。数据不必提前排序,不同的连接类型是通过 how 关键字完成的。

    19.6K20

    Python 数据分析(PYDA)第三版(一)

    最后一行在控制台中打印了data的值。 许多种类的 Python 对象都被格式化为更易读或漂亮打印,这与使用print进行正常打印不同。...虽然一些程序员更喜欢将注释放在特定代码行之前的行中,但有时这样做也是有用的: print("Reached this line") # Simple status report 函数和对象方法调用 使用括号调用函数并传递零个或多个参数...列表、集合和字典推导 列表推导是 Python 语言中一个方便且广泛使用的特性。它们允许您通过过滤集合的元素,将通过过滤的元素转换为一个简洁的表达式来简洁地形成一个新列表。...如果您发现自己使用了很多全局变量,这可能表明需要使用面向对象编程(使用类) 返回多个值 当我在 Java 和 C++ 中编程后第一次在 Python 中编程时,我最喜欢的功能之一是能够以简单的语法从函数中返回多个值...普通函数一次执行并返回一个结果,而生成器可以通过暂停和恢复执行每次使用生成器时返回多个值的序列。

    14500

    Pandas 秘籍:6~11

    然后,将函数字符串名称作为标量传递给agg方法。 您可以将任何汇总函数传递给agg方法。 为了简单起见,Pandas 允许您使用字符串名称,但是您也可以像在步骤 4 中一样明确地调用一个聚合函数。...默认情况下,dropna方法删除具有一个或多个缺失值的行。 我们必须使用subset参数来限制其查找缺少值的列。 在第 2 步中,我们定义一个仅计算SATMTMID列的加权平均值的函数。...where方法允许您通过将函数作为第一个参数来将调用序列用作条件的一部分。 使用一个匿名函数,该函数隐式传递给调用序列,并检查每个值是否小于零。...将多个变量存储为列值时进行整理 在同一单元格中存储两个或多个值时进行整理 在列名和值中存储变量时进行整理 将多个观测单位存储在同一表中时进行整理 介绍 前几章中使用的所有数据集都没有做太多或做任何工作来更改其结构...晚上 7 点 更多 此秘籍的最终结果是带有多重索引列的数据帧。 使用此数据帧,可以仅选择犯罪或交通事故。xs方法允许您从任何索引级别中选择一个值。

    34K10

    用Python也能进军金融领域?这有一份股票交易策略开发指南

    请记住,DataFrame结构是一个二维标记的数组,它的列中可能包含不同类型的数据。 在下面的练习中,将检查各种类型的数据。首先,使用index和columns属性来查看数据的索引和列。...当您遵循这一策略时,您会这样做的原因是您认为数据的移动将继续朝着当前的方向发展。换句话说,您相信股票有可以发现和利用的惯性,即向上或向下的趋势。...当您刚刚开始时,这个简单的策略可能看起来很复杂,但让我们一步步来: 首先定义您的两个不同的回溯期:短窗口和长窗口。您设置两个变量并为每个变量分配一个整数。...在实践中,您将short_window或long_window传递给rolling()函数, 由于窗口观测必须要有值,将1设置为最小值,并设置False使标签不设定在窗口的中心。...你会看到data对象允许你检索price, 用于forward-filled,通过得到最近的已知价格,如果有的话。如果没有,将返回一个NaN值。

    3K40

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    1.1 缺失值处理 数据中的缺失值常常会影响模型的准确性,必须在预处理阶段处理。Pandas 提供了丰富的缺失值处理方法: 删除缺失值:可以删除包含缺失值的行或列。...常用的编码方法有: Label Encoding:将分类值转换为数字。 One-Hot Encoding:为每个分类值创建一个新的列。...3.1 自定义函数与 apply() 操作 Pandas 的 apply() 方法允许我们将自定义函数应用于 DataFrame 或 Series,这非常适合在数据处理中重复使用逻辑。...3.2 使用 pipe() 构建数据处理管道 与 apply() 不同,pipe() 允许我们将多个函数串联在一起,构建灵活的处理管道。它使代码更加易读,并且适合复杂的流水线处理。...8.3 使用 explode() 拆分列表 如果某一列包含多个元素组成的列表,你可以使用 Pandas 的 explode() 方法将列表拆分为独立的行。

    23910

    python接口自动化39-JMESPath解析json数据

    切片 如果您曾经在python中使用过切片,那么您已经知道如何使用JMESPath slice。 您可以以最简单的形式指定开始索引和结束索引。结束索引是您不希望包含在切片中的第一个索引。...子查询使用 * 通配符 在查询的结果中继续使用 * 通配符,查询的结果是列表的列表 ? 如果我们只想要一个实例所有状态的列表怎么办?...管道表达式 前面在匹配list里面的多个值时候,查询的结果是一个list,如果我想取出结果里面的第一个可以使用管道符 | 取出people下所有对象的 first 属性,从结果里面取第一个值:people...多选 到目前为止,我们已经研究了JMESPath表达式,这些表达式有助于将JSON文档缩减为您感兴趣的元素。下一个概念, 多选列表和 多选哈希允许您创建JSON元素。...有一些函数可以进行类型转换(to_string,to_number),以帮助将参数转换为正确的类型。

    2.7K20

    Python 数据分析(PYDA)第三版(二)

    注意 Python 关键字and和or不能与布尔数组一起使用。请改用&(和)和|(或)。 使用布尔数组设置值的工作方式是将右侧的值或值替换到布尔数组的值为True的位置。...您可以将它们看作是快速矢量化的简单函数的包装器,这些函数接受一个或多个标量值并产生一个或多个标量结果。...any测试数组中是否有一个或多个值为True,而all检查是否每个值都为True: In [208]: bools = np.array([False, False, True, False]) In...如果您已经有一个不包含这些条目的索引数组或列表,那么从轴中删除一个或多个条目就很简单,因为您可以使用reindex方法或基于.loc的索引。...5.4 结论 在下一章中,我们将讨论使用 pandas 读取(或加载)和写入数据集的工具。之后,我们将深入探讨使用 pandas 进行数据清洗、整理、分析和可视化的工具。

    29300
    领券