首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PyTorch多GPU并行训练方法及问题整理

1.1.torch.nn.DataParallel 我一般在使用多GPU的时候, 会喜欢使用os.environ['CUDA_VISIBLE_DEVICES']来限制使用的GPU个数, 例如我要使用第...我一般都是在程序开始的时候就设定好这个参数, 之后如何将模型加载到多GPU上面呢?...='nccl', init_method='tcp://localhost:23456', rank=0, world_size=1) 第一个参数是pytorch支持的通讯后端, 后面会继续介绍, 但是这里单机多卡..., 然后才能使用DistributedDataParallel进行分发, 之后的使用和DataParallel就基本一样了 2.多机多gpu训练 在单机多gpu可以满足的情况下, 绝对不建议使用多机多gpu...一定要注意的是, 只能修改rank的值, 其他的值一律不得修改, 否则程序就卡死了初始化到这里也就结束了. 2.2.数据的处理-DataLoader 其实数据的处理和正常的代码的数据处理非常类似, 但是因为多机多卡涉及到了效率问题

14.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch中多GPU训练指北

    前言 在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情。...Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文简单讲解下使用Pytorch多GPU训练的方式以及一些注意的地方。...这里我们谈论的是单主机多GPUs训练,与分布式训练不同,我们采用的主要Pytorch功能函数为DataParallel而不是DistributedParallel,后者为多主机多GPUs的训练方式,但是在实际任务中...当然这仅仅是猜测,博主还没有仔细研究这个问题,待有结论时会在这里进行更新。...注意点 多GPU固然可以提升我们训练的速度,但弊端还有有一些的,有几个我们需要注意的点: 多个GPU的数量尽量为偶数,奇数的GPU有可能会出现中断的情况 选取与GPU数量相适配的数据集,多显卡对于比较小的数据集来说反而不如单个显卡训练的效果好

    1.7K50

    PyTorch中的多GPU训练:DistributedDataParallel

    在pytorch中的多GPU训练一般有2种DataParallel(DP)和DistributedDataParallel(DDP) ,DataParallel是最简单的的单机多卡实现,但是它使用多线程模型...,并不能够在多机多卡的环境下使用,所以本文将介绍DistributedDataParallel,DDP 基于使用多进程而不是使用多线程的 DP,并且存在 GIL 争用问题,并且可以扩充到多机多卡的环境,...所以他是分布式多GPU训练的首选。...这里使用的版本为:python 3.8、pytorch 1.11、CUDA 11.4 如上图所示,每个 GPU 将复制模型并根据可用 GPU 的数量分配数据样本的子集。...总结 以上就是PyTorch的DistributedDataParallel的基本知识,DistributedDataParallel既可单机多卡又可多机多卡。

    1.2K10

    PyTorch 如何使用GPU

    如何实现后向传播 (4)---- 具体算法 [源码解析] PyTorch 分布式(1)------历史和概述 0x01 问题 在 DataParallel 进行前向传播之前,需要在GPU之上分散数据,...这回答了我们的第二个问题:如何在 CPU 之上调用 GPU 操作? 0x04 在GPU/CPU之间切换 我们接下来分析如何在GPU/CPU之间切换。...所以我们需要有一个机制来解决这个问题,这个机制不仅仅是一个if语句这么简单,而是PyTorch内部一个非常重要的抽象,而且它必须在尽可能不降低PyTorch性能的情况下做到这一点。...这就解答了我们第三个问题:如何在 CPU,GPU 操作之间无缝切换? 关于第四个问题:是否需要把损失函数移动到 GPU 之上?.../advanced/dispatcher.html GPU多卡并行训练总结(以pytorch为例) 当代研究生应当掌握的并行训练方法(单机多卡) 分布式训练从入门到放弃 再谈PyTorch的初始化(上)

    3.4K41

    PyTorch 中的多 GPU 训练和梯度累积作为替代方案

    在本文[1]中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果...当处理高分辨率图像或占用大量内存的其他类型的数据时,假设目前大多数大型 DNN 模型的训练都是在 GPU 上完成的,根据可用 GPU 的内存,拟合小批量大小可能会出现问题。...和 3. — 如果您幸运地拥有一个大型 GPU,可以在其上容纳所需的所有数据,您可以阅读 DDP 部分,并在完整代码部分中查看它是如何在 PyTorch 中实现的,从而跳过其余部分。...这个过程存在一些问题和低效率: 数据-从主 GPU 传递,然后在其他 GPU 之间分配。...os.environ["LOCAL_RANK"]) torch.cuda.set_device(device) 然后,我们需要将模型包装在 DistributedDataParallel 中,以支持多

    45920

    在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练

    为了解决这些问题,从业者越来越多地转向分布式训练。分布式训练是使用多个GPU和/或多个机器训练深度学习模型的技术。...普通的PyTorch训练脚本在单个进程中执行其代码的单一副本。使用数据并行模型,情况就更加复杂了:现在训练脚本的同步副本与训练集群中的gpu数量一样多,每个gpu运行在不同的进程中。...请注意,此代码仅适用于在一台多GPU机器上进行训练!同一台机器用于启动作业中的每个流程,因此训练只能利用连接到该特定机器的GPU。...尽管如此,如果你不想花费额外的时间和精力邮箱使用多GPU训练,DataParallel实可以考虑的。.../pytorch-handbook),这本pytorch的中文手册已经在github上获取了12000+的star是一本非常详细的pytorch入门教程和查询手册,如果是想深入的学习,赶紧关注这个项目吧

    3.5K20

    Keras多GPU训练

    Keras 2.X版本后可以很方便的支持使用多GPU进行训练了,使用多GPU可以提高我们的训练过程,比如加速和解决内存不足问题。 多GPU其实分为两种使用情况:数据并行和设备并行。...这里就给出数据并行的多GPU训练示例: from keras.utils.training_utils import multi_gpu_model #导入keras多GPU函数 model =...Originally defined at: 我使用单GPU训练的时候没有问题,改成多GPU后出现这个问题。这个问题好解决,将Tensorflow升级到1.4即可。.../cifar10_resnet_ckpt.h5', monitor='val_acc', verbose=1, save_best_only=True) # 解决多GPU运行下保存模型报错的问题 其余的不变...还有其他的改法可以参考这篇博客:[Keras] 使用多 gpu 并行训练并使用 ModelCheckpoint() 可能遇到的问题,思路都是一样的,只是改法不同。 这样就能够成功使用多GPU训练啦。

    1.3K30

    pytorch基础知识-GPU加速

    GPU加速功能可以将运算切入到显卡中进行,从而提高运算速度。 该方法在pytorch 0.3版本以前较麻烦,当时是在代码后面加入.cpu()进行。...在新版本的pytorch中,变为统一设置运算位置的形式。 如上段代码中可以加入以下代码来提高运算速度。...首先定义device(设备),再调用.to函数 在使用该项功能前 首先确认自己电脑有GPU英伟达显卡,且支持CUDA模块, 随后确认自己电脑里安装了CUDA, 可以使用该代码来查看当前环境是否支持CUDA...= optim.SGD(net.parameters(), lr=1e-3) criteon = nn.CrossEntropyLoss().to(device) # 同样将loss部分的计算转移到GPU...上去 同样的,数据部分也可以转移到GPU上去 data, target = data.to(device), target.to(device) 这里要注意同一个数据在CPU和在GPU上建立后是完全不一样的

    1.1K10

    软件测试|Pytorch GPU 环境搭建

    之前⼀直使⽤ Tensorflow 训练模型,第⼀次训练Pytorch模型的时候,发现速度很慢,仔细观察,发现GPU 内存占⽤为0,基本没有使⽤GPU。...requestedcuda不可⽤报错,现实没有有效的驱动可使⽤测试cuda是否配置正确import torchprint(torch.cuda.is_available())重新安装cuda检测本地GPU...nvidia-smi图片pip3 install torch1.9.0+cu101 torchvision0.10.0+cu101 torchaudio=0.9.0 -fhttps://download.pytorch.org...如果版本不匹配,如上⾯的命令,则会出现错误图片我们打开网站https://download.pytorch.org/whl/torch_stable.html查看所有版本图片"cu101" 表示需要的CUDA.../whl/torch_stable.html终于安装成功,满⼼欢⼼重新测试:图片还是不对,这⼀次报错说我们的 CUDA 驱动版本太低了,⽽是 Pytorch 的版本和 CUDA 不匹配。

    1.3K50

    分布式入门,怎样用PyTorch实现多GPU分布式训练

    具有特别多参数的模型会受益于这种并行策略,因为这类模型需要很高的内存占用,很难适应到单个系统。...下图应该可以说清楚这个问题。 ? 模型并行 VS 数据并行 实际上,在大组织里,为了执行生产质量的深度学习训练算法,数据并行更加流行也更加常用。所以,本教程主要介绍数据并行。...torch.distributed API PyTorch提供了一个非常优雅并且易于使用的 API,作为用 C 语言写的底层 MPI 库的接口。...PyTorch 需要从源码编译,并且必须与安装在系统中的 Intel MPI 进行链接。我们现在就看一下 torch.distributed 的基本用法,以及如何执行它。...现在问题来了:我们如何确保独立的更新保持同步? 我们看一下更新方程的首次更新: ? 上面的第 2 点和第 4 点保证每个初始权重和梯度都是同步的。显然,它们的线性组合也是同步的(λ 是常数)。

    1.7K30

    Tensorflow多GPU使用详解

    磐创AI 专注分享原创AI技术文章 翻译 | fendouai 编辑 | 磐石 【磐创AI导读】:本文编译自tensorflow官方网站,详细介绍了Tensorflow中多GPU的使用。...目录: 介绍 记录设备状态 手动分配状态 允许GPU内存增长 在多GPU系统是使用单个GPU 使用多个 GPU 一. 介绍 在一个典型的系统中,有多个计算设备。...他们用字符串来表达,例如: •"/cpu:0": 机器的 CPU •"/device:GPU:0": 机器的 GPU 如果你只有一个 •"/device:GPU:1": 机器的第二个 GPU 如果...如果要真正限制 TensorFlow 进程可用的GPU内存量,这非常有用。 五. 在多GPU系统上使用单个GPU 如果您的系统中有多个GPU,则默认情况下将选择具有最低ID的GPU。...使用多个 GPU 如果您想要在多个 GPU 上运行 TensorFlow ,则可以采用多塔式方式构建模型,其中每个塔都分配有不同的 GPU。

    5.6K40
    领券