首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用FILTER函数筛选满足多个条件的数据

参数包括,指定筛选的条件,应返回TRUE,以便将其包含在查询中。参数是否为空,如果没有满足筛选条件的结果,则可以给该参数指定要返回的内容,可选。 我们可以使用FILTER函数返回满足多个条件的数据。...假设我们要获取两个条件都满足时的数据,如下图1所示示例数据,要返回白鹤公司销售香蕉的数据。...图1 可以使用公式: =FILTER(A2:D11,(A2:A11=G1)*(C2:C11=G2)) 公式中,两个条件相乘表示两者都要满足。结果如下图2所示。...图2 如果我们想要获取芒果和葡萄的所有数据,则使用公式: =FILTER(A2:D11,(C2:C11="芒果")+(C2:C11="葡萄")) 将两个条件相加,表示两者满足之一即可。...例如,想要获取白鹤公司芒果和葡萄的所有数据,则使用公式: =FILTER(A2:D11,((C2:C11="芒果")+(C2:C11="葡萄"))*(A2:A11="白鹤"))

3.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言指定列取交集然后合并多个数据集的简便方法

    我的思路是 先把5份数据的基因名取交集 用基因名给每份数据做行名 根据取交集的结果来提取数据 最后合并数据集 那期内容有人留言了简便方法,很短的代码就实现了这个目的。...我将代码记录在这篇推文里 因为5份数据集以csv格式存储,首先就是获得存储路径下所有的csv格式文件的文件名,用到的命令是 files的完整路径,如果设置的为FALSE则只返回文件名。...相对路径和绝对路径是很重要的概念,这个一定要搞明白 pattern参数指定文件的后缀名 接下来批量将5份数据读入 需要借助tidyverse这个包,用到的是map()函数 library(tidyverse...之前和一位同学讨论的时候他也提到了tidyverse整理数据,但是自己平时用到的数据格式还算整齐,基本上用数据框的一些基本操作就可以达到目的了。

    7.1K11

    Roslyn 在项目文件使用条件判断 判断不相等判断大小判断文件存在判断多个条件使用的范围

    本文告诉大家如何在项目文件通过不同的条件使用不同的方法运行 本文是 手把手教你写 Roslyn 修改编译 的文章,在阅读本文之前,希望已经知道了大多数关于 msbuild 的知识 为了告诉大家如何使用判断...>msbuild 用于 .NET Framework 的 Microsoft (R) 生成引擎版本 15.7.180.61344 版权所有(C) Microsoft Corporation。...>msbuild 用于 .NET Framework 的 Microsoft (R) 生成引擎版本 15.7.180.61344 版权所有(C) Microsoft Corporation。...判断多个条件 除了使用开始的使用 - 等连接多个判断还可以使用 And Or 来判断多个条件,如下面代码 使用引号加上 And 如'And',这时 And 会作为字符串 如果使用多个条件,建议使用()包括多个条件,如下面代码,同时进行多个判断 <OutputType

    2.7K10

    CentOSRedhat R包使用新的gcc编译【更新】

    R包在Linux下编译不通过,原因是gcc版本太低怎么办? 一些有C++代码的R包可能会用到一些新的C++特性,需要C++11或者C++14。...这个问题通常在CentOS/红帽系统上出现,因为系统稳定的要求,这个系列的系统它的C++版本很低。但请读者前往注意了别自己编译新版本的gcc,然后替换掉系统的。...正确的解决方式是安装独立的gcc,通过环境变量引用和使用它。...在Root用户下操作: yum install centos-release-scl yum install devtoolset-9 然后在你使用R的用户下操作: # If you use your...如果使用的是miniconda,这个文件的内容可能就是这样的了: 1CXX11=~/miniconda3/bin/x86_64-conda-linux-gnu-g++ -std=c++11 -fPIC

    1.8K10

    R-rbind.fill|列数不一致的多个数据集“智能”合并,Get!

    Q:多个数据集,列数不一致,列名也不一致,如何按行合并,然后保留全部文件的变量并集呢? A:使用 rbind.fill 函数试试!...数据集按列合并时,可以根据merge 或者 dplyr函数包的merge系列函数决定连接方式,达到数据合并的需求。...但是按行合并时常用的rbind,限制条件有点多,发现plyr包的rbind.fill 函数能比较好的解决这个问题。...data1,data2,data3 列数不一致,列名也不一致,现在需要按行合并,可能的问题: 1)rbind: 是根据行进行合并(行叠加)但是要求rbind(a, c)中矩阵a、c的列数必需相等。...2)列数相同的时候,变量名不一致也会合并,导致出错 二 rbind.fill“智能”合并 列数不一致多个数据集,需要按行合并,尝试使用plyr包rbind.fill函数 library(plyr) rbind.fill

    2.9K40

    使用R语言的parallel包调用多个线程加快数据处理进度

    ' )) 有意思的是我仍然是选择老牌r包,parallel; 使用方法非常简单, 就是 makeCluster 函数定义好需要并行计算的线程数量,然后之前的apply家族循环就区别在函数名字前面加上...system.time(parLapply(cl,1:1000000, function(x){ sample(1:100,10) })) 实战举例:是使用ChIPseeker包对十万多个ChIP-seq...的bed坐标文件进行注释,就自定义了函数 run_ChIPseeker,然后把全部的bed文件路径名字存储在 fs这个向量,然后就可以使用 parLapply 的模式,使用8个线程进行并行计算啦,代码如下所示...在我的Windows电脑里面,效果如下所示: Windows电脑的R并行计算 看懂这些代码,需要 有R语言基础哦: 生信基石之R语言 B站的10个小时教学视频务必看完,参考 GitHub 仓库存放的相关学习路线指导资料...,我把它粗略的分成基于R语言的统计可视化,以及基于Linux的NGS数据处理: 《生信分析人员如何系统入门R(2019更新版)》 《生信分析人员如何系统入门Linux(2019更新版)》 把R的知识点路线图搞定

    4.4K10

    Pandas之实用手册

    pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...用read_csv加载这个包含来自音乐流服务的数据的基本 CSV 文件:df = pandas.read_csv('music.csv')现在变量df是 pandas DataFrame:1.2 选择我们可以使用其标签选择任何列...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。

    22110

    【Python环境】Python中的结构化数据分析利器-Pandas简介

    只是思路略有不同,一个是以列为单位构建,将所有记录的不同属性转化为多个Series,行标签冗余,另一个是以行为单位构建,将每条记录转化为一个字典,列标签冗余。...使用这种方式,如果不通过columns指定列的顺序,那么列的顺序会是随机的。...通过逻辑指针进行数据切片: df[逻辑条件]df[df.one >= 2]#单个逻辑条件df[(df.one >=1 ) & (df.one 多个逻辑条件组合 这种方式获得的数据切片都是DataFrame...DataFrame的每一列,这里使用的是匿名lambda函数,与R中apply函数类似 设置索引 df.set_index('one') 重命名列 df.rename(columns={u'one':'...{'two' : 7,'three':10}]dfs = pd.DataFrame(ds,index=['e','f','g','h'])##构建一个新的DataFrame,dfsdf_t=pd.concat

    15.1K100

    3.11 PowerBI报告可视化-矩阵:使用计算组改变列小计的计算逻辑及条件格式设置

    解决方案虽然可以使用辅助表双层表头和SWITCH度量值(根据表头返回结果)的方案,但是度量值相对复杂。...推荐使用计算组,把汇总列放在列小计上,相对简单还可以复用给别的度量值,而且支持给小计列设置不同的条件格式。举例按上图做一个矩阵,小计列带不同的条件格式。...;用鼠标拖动把年月下的“.”这一列的列宽调整到最小直至隐藏。...STEP 7 如果给这种矩阵的小计添加不同的条件格式,需要写专门的度量值,比如用于今年YTD的度量值,遇到今年YTD的表头时才返回今年YTD的值,否则返回空。...然后在销量字段的条件格式中,格式样式选择规则,应用于选择仅合计,基于哪个字段选择写好的度量值,其他按需设置。

    6510

    30 个小例子帮你快速掌握Pandas

    Balance hist 11.用isin描述条件 条件可能有几个值。在这种情况下,最好使用isin方法,而不是单独写入值。 我们只传递期望值的列表。...重设索引,但原始索引保留为新列。我们可以在重置索引时将其删除。...18.插入新列 我们可以向DataFrame添加新列,如下所示: group = np.random.randint(10, size=6) df_new['Group'] = group df_new...但新列将添加在末尾。如果要将新列放在特定位置,则可以使用插入函数。 df_new.insert(0, 'Group', group) df_new ?...Geography列的内存消耗减少了近8倍。 24.替换值 替换函数可用于替换DataFrame中的值。 ? 第一个参数是要替换的值,第二个参数是新值。 我们可以使用字典进行多次替换。 ?

    10.8K10

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...— 获取Row元素的所有列名: r = Row(age=11, name='Alice') print r.columns # ['age', 'name'] 选择一列或多列:select df...)联合使用: 那么:当满足条件condition的指赋值为values1,不满足条件的则赋值为values2....— 2.2 新增数据列 withColumn— withColumn是通过添加或替换与现有列有相同的名字的列,返回一个新的DataFrame result3.withColumn('label', 0)...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,

    30.5K10

    精通Excel数组公式005:比较数组运算及使用一个或多个条件的聚合计算

    图1 使用数组公式 Excel中没有一个MINIF函数来根据条件求相应的最小值,可以使用MIN/IF函数组合来实现。...当执行单独的计算且数据集具有字段名称(列标签)时,这些函数非常强大。 如下图2所示,使用DMIN函数来计算指定城市的最小时间。 ?...在“输入引用列的单元格”中输入D3,单击“确定”按钮。 使用数据透视表 可以使用数据透视表来获得上文示例中的结果,如下图6所示。 ? 图6 创建数据透视表的步骤如下: 1....可以看出,数据透视表对于带有一个或多个判断条件的聚合计算非常方便,但是与公式相比,当源数据变化时,它不能立即更新,需要刷新才能更新其内容。...我们看到,前面使用的数组公式必须以按Ctrl+Shift+回车键结束。自Excel 2010起,可以使用一个新函数:AGGREGATE函数,而无需按Ctrl+Shift+回车键。

    8.3K40

    高效的10个Pandas函数,你都用过吗?

    Query Query是pandas的过滤查询函数,使用布尔表达式来查询DataFrame的列,就是说按照列的规则进行过滤操作。...Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...Ture表示允许新的列名与已存在的列名重复 接着用前面的df: 在第三列的位置插入新列: #新列的值 new_col = np.random.randn(10) #在第三列位置插入新列,从0开始计算...以前面的df为例,group列有A、B、C三组,year列有多个年份。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。

    4.2K20

    大数据开发!Pandas转spark无痛指南!⛵

    条件选择 PandasPandas 中根据特定条件过滤数据/选择数据的语法如下:# First methodflt = (df['salary'] >= 90_000) & (df['state'] =...dataframe - pandas# pandas拼接多个dataframedfs = [df, df1, df2,......,dfn]df = pd.concat(dfs, ignore_index = True) 多个dataframe - PySparkPySpark 中 unionAll 方法只能用来连接两个 dataframe...我们使用 reduce 方法配合unionAll来完成多个 dataframe 拼接:# pyspark拼接多个dataframefrom functools import reducefrom pyspark.sql...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数

    8.2K72
    领券