有读者询问如何对散点图拟合非线性的曲线。实际上我们通常看到的无论是直线拟合还是各种曲线拟合都属于广义线性模型。 这里我们构造一组数据来看看如何使用 ggplot2 来拟合数据。...<- data.frame( x = x, y = y ) 使用 ggplot2 绘制散点图: library(ggplot2) p <- ggplot(df, aes(x, y)) +...geom_point() p 我们先直接利用 geom_smooth() 对散点进行平滑拟合,默认使用的是 loess 方法。...,我们可以通过 R 支持的公式来设定如何拟合散点。...,然后使用线条添加在图上也是可以的。
R语言ggplot2包用来画折线图的函数默认应该是带有棱角的,如果想要实现平滑的曲线好像不太容易,之前的推文介绍过 ggalt这个包 R语言的ggplot2做平滑的折线图简单小例子 R语言ggplot2...常规的折线图 library(ggplot2) df<-data.frame(x=1:10, y=sample(1:10,10)) ggplot(df) + geom_line...平滑的可以借助 geom_bump()函数 来自于ggbump这个R包 帮助文档 https://github.com/davidsjoberg/ggbump 这个链接还有很多漂亮的图 比如 ?...上面链接里有实现这两个图的代码,感兴趣的可以自己尝试重复一下 话说这个 Bump chart 对应的中文是啥意思呢?...) library(ggplot2) library(dplyr) df<-data.frame(x=1:10, y=sample(1:10,10)) ggplot(df
非常有意思的数据可视化案例 ,原文提出的问题是 学术论文中的作者数量有逐年增加的趋势 ;于是利用R语言里的 rplos 包抓取了 Plos 系列的6本期刊的2006年至2013年的每篇论文里的作者数量...https://github.com/blmoore/blogR 原始代码中抓取数据的部分好像不能用了,我稍微改动了一下,选取了2006年到2020年的数据,获取数据的代码这里就不放了,如果需要本文的示例数据可以知己在文末留言...image.png 还是Plos系列学术论文2006-2020年间作者数量的数据,这次用 经验累积分布曲线来展示数据。这个图我还是第一次听说。...借助ggplot2中的stat_ecdf()函数实现 我们先来看一下帮助文档中的例子 df_1 <- data.frame( x = c(rnorm(100, 0, 3), rnorm(100, 0...image.png 好了,今天的内容就到这里了 欢迎大家关注我的公众号 小明的数据分析笔记本 小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学
尤其是在R包中编程改变了从ggplot2引用函数的方式,以及在aes()和vars()中使用ggplot2的非标准求值的方式。...这种tidy eval计算符号会捕捉用户提供的表达式,并将其传递给使用非标准计算的函数,如aes()或vars()。...常规任务最佳实践 使用ggplot2可视化一个对象 ggplot2在包中通常用于可视化对象(例如,在一个plot()-风格的函数中)。.../ 234, "r" = 25 / 234 ), class = "discrete_distr" ) R中需要的类都有plot()方法,但想要依赖一个单一的plot()为你的每个用户都提供他们所需要的可视化需求是不现实的...如果没有,则会将主题对象存储在编译后的包的字节码中,而该字节码可能与安装的ggplot2不一致!
p=23869 1 引言 在比较性的纵向临床研究中,主要终点往往是发生特定临床事件的时间,如死亡、心衰住院、肿瘤进展等。_风险_比例估计值几乎被常规用于量化治疗差异。...本文说明了如何使用该包中的函数来比较两组限制平均生存时间。 2 样本数据 在这个文章中,我们使用了梅奥诊所进行的原发性胆汁性肝硬化(pbc)研究中的部分数据,该研究包括在R语言的生存包中。...下面是每个实验组的死亡时间的卡普兰-梅尔(KM)估计。 3 限制平均生存时间(RMST)和限制平均损失时间(RMTL RMST被定义为生存函数曲线下的面积,直到一个时间τ(的观察值,我们可以使用平均生存时间 而不是μτ。对μτ的一个自然估计是 其中Sˆ(t)是S(t)的KM估计。ˆµτ的标准误差也是用分析法计算的;详细的公式在[3]中给出。...与中位生存时间不同,即使在严重的删减情况下,它也是可以估计的。关于限制性平均生存时间,有相当多的方法学研究可以替代风险比方法。然而,这些方法在实践中似乎很少被使用。
本篇推文来自于公众号读者的投稿 最近在画散点图的时候使用lm函数进行线性回归拟合之后,想将拟合的方程与R2加入到绘制的图片中。在百度中翻了半天,终于在一个外国网站上找到了方法。...df<-data.frame(x = c(1:100)) df$y <- 2 + 3 * df$x + rnorm(100, sd = 40) head(df) ggplot2基本的散点图并添加拟合曲线...添加拟合方程和R2 这里他的办法是自定义了一个函数,这个函数看起来还挺复杂的,先不用管这个函数的意思了 ,直接复制过来用就可以了 lm_eqn <- function(df){ m 的R包 ggpmisc 加载R包,模拟数据集 library(ggplot2) library(ggpmisc) df <- data.frame(x = c(1:100)) df$y...最后是调整细节进行美化 点的大小与颜色,透明度 拟合曲线相关颜色,粗细与填充 去掉背景网格线 代码 ggplot(data = df, aes(x = x, y = y)) + geom_smooth
经过这么长时间对R语言的学习,相信对于R中的四种独立图形系统,你肯定也不会感到惊奇。...四种常见的作图系统中,ggplot2包基于一种全面的图形“语法”,提供了一种全新的图形创建方法。这个包极大地扩展了R绘图的范畴,提高了图形的质量。...函数ggplot()指定要绘制的数据源和变量,几何函数则指定这些变量如何在视觉上进行表示(使用点、条、线和阴影区)。表1列出了几种常见的几何函数(目前有37个几何函数可供使用)。 表1,几何函数 ?...举个最简单的例子,函数geom_boxplot()可以绘制箱线图,如图4。 图4,箱线图示例 ? 每个几何函数都有一组自己的选项,可以通过帮助文档来了解,我们也给大家列出了一些常见选项。...我们在前面已经见过了函数geom_smooth()的例子,该函数中的参数含义依次为:method代表要使用的平滑函数,如lm、glm等;参数formula代表在函数中使用的公式,和回归分析中的参数formula
本文使用了航线频数来计算地图航线绘制的亮度。读者根据需要可以自行关联所需数据,例如成本,平均成本,旅客人次等,以达到不同的研究目的。...切割图形重分组算法 检查组内不同经度300度以上的坐标,作为极端值,然后对数据进行平均 。然后分别对极端值分组标号为一组,将低于300的坐标作为一组。...找到曲线数据中不连续的数据即为没有闭合的曲线 , 然后 , 将断点数据重新赋值 , 进行连接 , 得到闭合的航线曲线 . g <- rep(1, length(df[, longcol])) if...最后使用ggplot函数进行绘制。....R语言生存分析数据分析可视化案例 6.r语言数据可视化分析案例:探索brfss数据数据分析 7.R语言动态可视化:制作历史全球平均温度的累积动态折线图动画gif视频图 8.R语言高维数据的主成分pca
前言 在前几天对数据分析师与算法工程师进行岗位对比分析的文章中,我们使用了密度分布图和箱线图对薪资水平与学历对薪资的影响进行了分析,那么早起就对这两种图形的绘制方法进行解析,也借着这个机会讲一下我最喜欢的绘图包...:ggplot2 密度分布图 在频率分布直方图中,当样本容量充分放大时,图中的组距就会充分缩短,这时图中的阶梯折线就会演变成一条光滑的曲线,这条曲线就称为总体的密度分布曲线。...这条曲线排除了由于取样不同和测量不准所带来的误差,能够精确地反映总体的分布规律,密度分布图其实就是密度分布曲线的填充。 原文的的密度分布图的绘制软件为R,为啥不用Python?...","salary") 接着使用下面的代码加载ggplot2,并设置x轴,此时图形长这样?...结束语 以上就是使用R绘制漂亮的密度分布图过程,我已将原始数据放在公众号后台回复招聘获取,感兴趣的读者可以利用原始数据自己使用python进行处理得到我们需要的数据格式再绘制,最后留一个问题,怎样绘制学历关于薪资的箱线图
multiple bacterial species and antibiotic classes 数据代码链接 https://github.com/orgs/gradlab/repositories 今天的推文重复一下论文中的...Figure 1B image.png 论文提供的代码涉及到了map系列函数,这个我之前基本没有用过,功能很强大。...amplitude_ci.upper, sig = sig), .f = plot_use_model_func)) %>% pull(plot) -> f1b_plots 这里他的处理方式是将多个图保存到一个数据框的一列...使用ggpubr包中的函数拼图 library(ggpubr) f1b = do.call(ggarrange, c(f1b_plots, nrow = 2, ncol = 3, align = "...,如果有时间的话争取录视频逐行解释其中的代码。
“今天又是一篇Python可视化的好文。用过R语言的都知道ggplot2画出来的图表是极其舒适的,从配色到线条,都十分养颜。...之前我用过Python来画图,原始状态下的图表真的是难以入目,难登大雅之堂。今天,文章介绍了一个库,叫 plotnine,是可以实现ggplot2的功效,具体怎么玩?...Plotnine is the implementation of the R package ggplot2 in Python....It replicates the syntax of R package ggplot2 and visualizes the data with the concept of the grammar...Top 50 ggplot2 Visualizations — The Master List (With Full R Code), 2017. http://r-statistics.co/.
差异分析|DESeq2完成配对样本的差异分析 ggplot2-plotly|让你的火山图“活”过来 R|clusterProfiler-富集分析 ggplot2| 绘制KEGG气泡图 ggplot2|绘制...R|生存分析 - KM曲线 ,必须拥有姓名和颜值 注:可以使用其他机器学习的方法进行筛选,如lasso,随机森林,SVM等,可以参考使用机器学习方法构建预后模型的集大成者文献,2010年NC的文章 Pan-cancer...绘制ROC曲线的方式很多种,一般绘制 1年,3年和5年的ROC曲线。...RNAseq|构建预后模型后你还需要这些图,森林图,诺莫图,校准曲线,DCA决策曲线 4,模型基因-预后模型联动 如果想展示riskscore中具体的基因表达与预后风险得分关系的话可以绘制风险因子联动图...|让你的火山图“活”过来 R|clusterProfiler-富集分析 ggplot2| 绘制KEGG气泡图 ggplot2|绘制GO富集柱形图 clusterProfiler|GSEA富集分析及可视化
比如在预测病人有无高血压时,有无高血压为二分类的响应变量:有或无,使用测量的血压值为预测变量,血压值为连续变量。...ROCR包与ROC 一个用于分析ROC的数据是一组连续变量和一组二分类变量,连续变量是预测变量,分类变量是响应变量。 在ROCR包中,这两组数据被称为“predictions“和”labels“。...对于一个ROC曲线而言,它不直接得出哪个阈值最好,而是把所有的阈值都尝试一遍,得出一组(FPR,TPR)坐标,然后绘制成曲线,然后就可以根据曲线来选择最好的阈值:尽可能大的TPR,尽可能小的FPR。...,y的名字及数值,如果调用performance时只传入一个参数,如auc,auc就是这里面的y。...也可以使用ggplot2进行绘制: tibble(x=perf_roc@x.values[[1]], y=perf_roc@y.values[[1]]) %>% ggplot(aes(x=x, y=y
在【r的计算与绘制这篇文章中我讲了ROC曲线的本质以及如何计算和绘制ROC曲线。...注意,我这里谈到的ROC并未曾涉及机器学习模型的拟合与预测,而是指存在一组真实的连续型数值数据设定阈值的不同对响应变量(二分类)的影响(真阳性率、假阳性率)。...and analyze ROC curves in R and S+ plotROC plotROC包较为简单与单一,它就是用来绘制ROC曲线的,包中定义的函数基于ggplot2,因此我们可以结合ggplot2...pROC pROC是一个相对plotROC更强大的R包,不同于plotROC基于ggplot2的创建,pROC自身构建了比较完整的ROC分析和绘图体系。...,第一个是plot.roc(),它可以绘制ROC曲线,并返回一个ROC对象,里面包含该曲线的众多有用信息,并为后续的分析做基础,lines.roc()为当前ROC曲线上增添新的ROC曲线。
中位生存时间:又称为生存时间的中位数,表示刚好有50%的个体其存活期大于该时间。 二、生存分析研究的部分内容 1、描述生存过程 研究生存时间的分布特点,估计生存率及其标准误、绘制生存曲线。...注:生存曲线为单因素分析(两个或者多个水平),用中位生存时间表示生存时间的平均水平; 2、比较生存过程 获得生存率及其标准误的估计值后,可以进行两组或多组生存曲线的比较,常用方法有对数秩检验(log-rank...如曲线交叉,可能存在混杂因素。 注:两个或者多个生存曲线的比较(单因素两个或者多个水平) 3、影响生存时间的因素分析 常用的多因素生存分析方法:Cox比例风险回归模型。可能后面会啰嗦。...三、R包进行生存分析 1、R-survival包进行生存分析,并绘制KM曲线图: Surv:用于创建生存数据对象 survfit:创建KM生存曲线或是Cox调整生存曲线 survdiff:用于不同组的统计检验...2、R-survminer包绘制KM曲线图:图形更精美,展示效果更好。
中位生存时间:又称为生存时间的中位数,表示刚好有50%的个体其存活期大于该时间。 二 生存分析部分内容 1、描述生存过程 研究生存时间的分布特点,估计生存率及其标准误、绘制生存曲线。...注:生存曲线为单因素分析(两个或者多个水平),用中位生存时间表示生存时间的平均水平; 2、比较生存过程 获得生存率及其标准误的估计值后,可以进行两组或多组生存曲线的比较,常用方法有对数秩检验(log-rank...如曲线交叉,可能存在混杂因素。 注:两个或者多个生存曲线的比较(单因素两个或者多个水平) 3、影响生存时间的因素分析 常用的多因素生存分析方法:Cox比例风险回归模型。...三 R包进行生存分析 1、R-survival包进行生存分析,并绘制KM曲线图: Surv:用于创建生存数据对象 survfit:创建KM生存曲线或是Cox调整生存曲线 survdiff:用于不同组的统计检验...2、R-survminer包绘制KM曲线图: 图形更精美,展示效果更好。
因此,在评估模型性能时,通常需要结合其他指标,如精确率、召回率、F1分数等,来进行全面的评估。 ---- 起码从R的角度来说,箱线图直接到ROC曲线,顺便计算得到AUC值是很容易的。...同样的,我也是让chatGPT做了一下:使用R代码举例一个差异分析,并且绘制ROC曲线和表达量差异箱线图 ---- 以下是一个使用R进行差异分析、绘制ROC曲线和箱线图的示例。...这个示例使用了pROC包进行ROC分析和绘图,使用ggplot2包进行箱线图的绘制。注意,这只是一个示例,实际的分析可能需要根据你的数据和问题进行调整。...然后,它计算了一个ROC曲线,并打印了AUC值,最后绘制了ROC曲线。这只是一个基本的示例,实际的分析可能需要更复杂的统计测试和更复杂的图形。...而且前面的表达量差异分析和后面的ROC曲线没有关系。。。。 其实R语言提供了一系列的函数来处理各种统计分布,包括正态分布、二项分布、泊松分布等。
该结果表明,逻辑回归对此样本数据具有更好的样本内平均性能。 确定自定义内核功能的参数值 本示例说明如何使用ROC曲线为分类器中的自定义内核函数确定更好的参数值。 在单位圆内生成随机的一组点。...默认情况下将使用阈值平均来计算置信范围。 绘制逐点置信区间。...因此,可能希望通过阈值平均来计算真实正利率(TPR)的逐点置信区间。 绘制置信区间。...2.面板平滑转移回归(PSTR)分析案例实现 3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR) 4.R语言泊松Poisson回归模型分析案例 5.R语言回归中的Hosmer-Lemeshow...拟合优度检验 6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现 7.在R语言中实现Logistic逻辑回归 8.python用线性回归预测股票价格 9.R语言如何在生存分析与
p=22966 逻辑回归是一种拟合回归曲线的方法,y=f(x),当y是一个分类变量时。这个模型的典型用途是在给定一组预测因素x的情况下预测y,预测因素可以是连续的、分类的或混合的。...机器学习中使用的一个经典例子是电子邮件分类:给定每封电子邮件的一组属性,如字数、链接和图片,算法应该决定该电子邮件是垃圾邮件(1)或不是(0)。...有不同的方法可以做到这一点,一个典型的方法是用平均数、中位数或现有数值来替换缺失的数值。我使用平均数。...这个函数向我们展示变量是如何虚拟出来的,以及如何在模型中解释它们。 ? 例如,你可以看到,在性别这个变量中,女性将被用作参考变量。...作为最后一步,我们将绘制ROC曲线并计算AUC(曲线下面积),这是二元分类器的典型性能测量。
导读:ROC三剑客这三篇文章由一年前的两篇文章和今天写的一篇文章组成,内容涵盖了 ROC 原理解析和计算、两个R包 plotROC 和 pROC 的使用教程。...希望感兴趣的读者修此剑术,保家卫国~~你的剑,就是我的剑! 在《使用R语言手撕ROC曲线》这篇文章中我讲了ROC曲线的本质以及如何计算和绘制ROC曲线。...and analyze ROC curves in R and S+ plotROC plotROC包较为简单与单一,它就是用来绘制ROC曲线的,包中定义的函数基于ggplot2,因此我们可以结合ggplot2...有读者谈到如何修改,之前之所以没写多条曲线添加AUC,是因为涉及一些文本图像的微调,实际使用时需要自定义一下 如果想要添加6条曲线,在加上ALL,就是7条,请补充函数中的if代码块 if(length...pROC pROC是一个相对plotROC更强大的R包,不同于plotROC基于ggplot2的创建,pROC自身构建了比较完整的ROC分析和绘图体系。
领取专属 10元无门槛券
手把手带您无忧上云