首页
学习
活动
专区
圈层
工具
发布

R语言分层线性模型案例

一个商业例子可能是业务部门和细分的员工满意度。每个学科都有许多例子,其中观察以某种形式的层次结构进行分组。 在这里,我想解释使用一个简单的例子, 如何使用R来构建分层线性模型。...") g + geom_smooth(aes(x=x,y=y),method=lm,se=TRUE) 这些组有不同的颜色 。...在本文的其余部分,我将展示如何使用层次模型来模拟这种情况,该模型确实考虑了组信息。 ? 建议的分层线性模型的一个包是arm,它具有与lm()函数非常相似的函数lmer()。...每组只有一个单独的线性回归。对于蓝色和红色组,线条在大多数情况下非常适合数据,但对于只有三个数据点的绿色组,线条遍布整个地方,因为没有任何先验信息,估计数据的斜率和偏移量非常不确定。...右侧的图表显示 因为该模型假设所有三组的斜率和偏移都是从一个分布中得出的,所以可以合理地假设斜率是正的。我们知道这适用于这个例子,因为我们设计了数据生成过程。 ?

1.8K20

数据科学24 | 回归模型-基本概念与最小二乘法

图6.不同?值的残差平方和变化 可以看到,斜率?=0.64时,残差平方和最小。可以用 预测孩子的身高。 在R中可以用lm()函数快速拟合线性模型。...将数据“居中”并“缩放”的过程称为“标准化“ 4. 经验协方差 对于成对的数据 ,定义经验协方差为 同样,有时选择以分母 代替分母 ,后者为无偏估计 5....相关系数 定义相关系数,其中 和 分别是 观测值和 观测值的标准差的估计值 相关系数 当且仅当 或 观测值分别恰好落在正斜率线或负斜率线时, , 和 , 度量 和 数据之间线性关系的强度...x [1,] 23.94 0.6463 [2,] 23.94 0.6463 在R中检查计算,根据公式计算的斜率和截距与lm()函数拟合回归线得到的结果一样。...0.6463 将数据居中, ,回归线斜率相同。

4.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R中进行nls模型分析

    欢迎关注R语言数据分析指南 ❝本节来介绍如何使用R进行nls分析使用内置的mtcars数据集,整个过程仅参考。希望对各位观众老爷能有所帮助。...蓝色趋势线呈负斜率,这表示 wt 和 mpg 之间存在负相关。即随着车辆重量的增加,每加仑的行驶英里数似乎会减少。 数据点大致沿着蓝色趋势线分布,但有一定的波动。...❞ 「nls(非线性最小二乘法)拟合指数模型」 使用nls来拟合非线性模型前需要先确定初始值,可通过将非线性模型线性化来估计参数的初始值。...通过对 mpg 取对数并对 wt 进行线性回归,可以将非线性的指数关系转换为线性关系,这样更容易分析和获取初始值。线性模型的斜率和截距转换回指数模型的参数。...线性模型的截距将是 log(k),因此k 将是截距的指数。 线性模型的斜率将是b的估计值。

    43810

    样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据

    市场,是一个有点模糊的概念,像往常一样,我们使用标准普尔500指数进行近似计算。上述关系(以下简称β)对交易和风险管理的许多方面是不利的。已经确定的是,波动率对于上涨的市场和下跌的市场有不同的动态。...我们无论如何都要使用回归来估计贝塔值,所以对于希望拟合这种不对称性的投资者来说,分段线性回归是合适的。 这个想法很简单,我们将数据集分成两个(或更多)部分,并分别、逐块或 _分段_估计每个部分。...这个简单的想法可以用复杂的符号和代码来实现。 为了说明,我使用 Microsoft 股市收益率数据(MSFT)。 我对不同收益率估计了不同的β值,正日在零以上,负日在零以下,所以零是我们的突破点。...这属于结构性变化的范畴。我考虑沿轴线的点的网格,并建立一个模型,在每个点上有一个断点,断点前有一个斜率,断点后有一个斜率。我寻找整个样本的平方误差之和的最小值,所以我把两个模型的平方误差相加。...本文摘选《R语言样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据》

    65320

    样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据|附代码数据

    市场,是一个有点模糊的概念,像往常一样,我们使用标准普尔500指数进行近似计算。上述关系(以下简称β)对交易和风险管理的许多方面是不利的。已经确定的是,波动率对于上涨的市场和下跌的市场有不同的动态。...相关视频 拓端 ,赞11 拓端 ,赞26 这个想法很简单,我们将数据集分成两个(或更多)部分,并分别、逐块或 _分段_估计每个部分。这个简单的想法可以用复杂的符号和代码来实现。...我对不同收益率估计了不同的β值,正日在零以上,负日在零以下,所以零是我们的突破点。(这个突破点在学术术语中被称为 "结",为什么是 "结 "呢?因为它把两部分联系在一起。) 下面的图显示了结果。...---- 点击标题查阅往期内容 R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测 左右滑动查看更多 01 02 03 04 这属于结构性变化的范畴。...我考虑沿轴线的点的网格,并建立一个模型,在每个点上有一个断点,断点前有一个斜率,断点后有一个斜率。我寻找整个样本的平方误差之和的最小值,所以我把两个模型的平方误差相加。下图显示了结果。

    42810

    R语言LME4混合效应模型研究教师的受欢迎程度|附代码数据

    现在我们可以为数据中的100个不同类别绘制不同的回归线我们清楚地看到,外向性和受欢迎程度之间的关系在所有层级中并不相同,但平均而言,存在明显的正向关系。...在本教程中,我们将显示这些不同斜率的估计值(以及如何解释这些差异)。 ...在输出的固定效果表的最后一列中,我们看到了P值,这些值表示所有回归系数均与0显着不同。一层和二层预测变量现在,我们(除了重要的1层变量)还在第2层(教师经验)添加了预测变量。...然而,没有给出对随机效应的显着性检验,但是,可变性别的斜率的误差项(方差)估计很小(0.0024)。这可能意味着类别之间的SEX变量没有斜率变化,因此可以从下一次分析中删除随机斜率估计。...0.091外向的平均影响为0.453外向斜率的随机效应为0.035一层残差为0.552二层的残差为1.303具有随机斜率和跨水平交互作用的一层和二层预测 作为最后一步,我们可以在教师的经验和外向性之间添加跨层的交互作用

    1.3K10

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    在这里,我们将重点放在样条曲线上。在过去,它可能类似于分段线性函数。 例如,您可以在模型中包含线性项和光滑项的组合 或者我们可以拟合广义分布和随机效应 一个简单的例子 让我们尝试一个简单的例子。...: lm_y lm(y ~ x, data = Sample) 并使用geom_smooth in 绘制带有数据的拟合线 ggplot ggplot(Sample, aes(x, y)) + geom_point...() + geom_smooth(method = lm) 查看图或 summary(lm_y),您可能会认为模型拟合得很好,但请查看残差图 plot(lm_y, which = 1) 显然,残差未均匀分布在...,我们还可以利用中的 method = 参数来 geom_smooth指定模型公式。...在这个例子中,非常合适。“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。

    1.2K00

    R语言LME4混合效应模型研究教师的受欢迎程度|附代码数据

    编辑 现在我们可以为数据中的100个不同类别绘制不同的回归线 我们清楚地看到,外向性和受欢迎程度之间的关系在所有层级中并不相同,但平均而言,存在明显的正向关系。...在本教程中,我们将显示这些不同斜率的估计值(以及如何解释这些差异)。...在输出的固定效果表的最后一列中,我们看到了P值,这些值表示所有回归系数均与0显着不同。一层和二层预测变量现在,我们(除了重要的1层变量)还在第2层(教师经验)添加了预测变量。...然而,没有给出对随机效应的显着性检验,但是,可变性别的斜率的误差项(方差)估计很小(0.0024)。这可能意味着类别之间的SEX变量没有斜率变化,因此可以从下一次分析中删除随机斜率估计。...0.091 外向的平均影响为0.453 外向斜率的随机效应为0.035 一层残差为0.552 二层的残差为1.303 具有随机斜率和跨水平交互作用的一层和二层预测 作为最后一步,我们可以在教师的经验和外向性之间添加跨层的交互作用

    99430

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    在这里,我们将重点放在样条曲线上。在过去,它可能类似于分段线性函数。 例如,您可以在模型中包含线性项和光滑项的组合 或者我们可以拟合广义分布和随机效应 一个简单的例子 让我们尝试一个简单的例子。...: lm_y lm(y ~ x, data = Sample) 并使用geom_smooth in 绘制带有数据的拟合线 ggplot ggplot(Sample, aes(x, y)) + geom_point...() + geom_smooth(method = lm) 查看图或 summary(lm_y),您可能会认为模型拟合得很好,但请查看残差图 plot(lm_y, which = 1) 显然,残差未均匀分布在...,我们还可以利用中的 method = 参数来 geom_smooth指定模型公式。...在这个例子中,非常合适。“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。

    1.3K00

    多水平模型、分层线性模型HLM、混合效应模型研究教师的受欢迎程度

    本教程期望: 多层_回归_模型的基础知识 。 R中编码的基础知识。 安装R软件包 lme4,和 lmerTest。...现在我们可以为数据中的100个不同类别绘制不同的回归线 我们清楚地看到,外向性和受欢迎程度之间的关系在所有层级中并不相同,但平均而言,存在明显的正向关系。...在本教程中,我们将显示这些不同斜率的估计值(以及如何解释这些差异)。...然而,没有给出对随机效应的显着性检验,但是,可变性别的斜率的误差项(方差)估计很小(0.0024)。这可能意味着类别之间的SEX变量没有斜率变化,因此可以从下一次分析中删除随机斜率估计。...0.091 外向的平均影响为0.453 外向斜率的随机效应为0.035 一层残差为0.552 二层的残差为1.303 具有随机斜率和跨水平交互作用的一层和二层预测 作为最后一步,我们可以在教师的经验和外向性之间添加跨层的交互作用

    1.7K20

    R语言LME4混合效应模型研究教师的受欢迎程度

    本教程期望: 多层回归模型的基础知识 。 R中编码的基础知识。 安装R软件包 lme4,和 lmerTest。...到目前为止,我们已经忽略了数据的嵌套多层结构。我们可以通过对不同类进行颜色编码来显示这种多层结构。 ? 现在我们可以为数据中的100个不同类别绘制不同的回归线 ?...我们清楚地看到,外向性和受欢迎程度之间的关系在所有阶层中并不相同,但平均而言,存在明显的正向关系。在本教程中,我们将显示这些不同斜率的估计值(以及如何解释这些差异)。...然而,没有给出对随机效应的显着性检验,但是,可变性别的斜率的误差项(方差)估计很小(0.0024)。这可能意味着类别之间的SEX变量没有斜率变化,因此可以从下一次分析中删除随机斜率估计。...0.091 外向的平均影响为0.453 外向斜率的随机效应为0.035 一层残差为0.552 二层的残差为1.303 具有随机斜率和跨水平交互作用的一层和二层预测 作为最后一步,我们可以在教师的经验和外向性之间添加跨层的交互作用

    1.2K20

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    在这里,我们将重点放在样条曲线上。在过去,它可能类似于分段线性函数。例如,您可以在模型中包含线性项和光滑项的组合或者我们可以拟合广义分布和随机效应一个简单的例子让我们尝试一个简单的例子。...() + geom_smooth(method = lm)查看图或 summary(lm_y),您可能会认为模型拟合得很好,但请查看残差图plot(lm_y, which = 1)显然,残差未均匀分布在...,我们还可以利用中的 method = 参数来 geom_smooth指定模型公式。...在这个例子中,非常合适。“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。...点击标题查阅往期内容【视频】广义相加模型(GAM)在电力负荷预测中的应用分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测实现广义相加模型GAM和普通最小二乘(OLS)回归R语言非参数模型厘定保险费率

    1.5K20

    R语言广义相加模型 (GAMs)分析预测CO2时间序列数据|附代码数据

    从概念上讲,这与使用二次项()或三次项()作为预测变量没什么不同。在这里,我们将重点放在样条曲线上。在过去,它可能类似于分段线性函数。...() + geom_smooth(method = lm)查看图或 summary(lm_y),您可能会认为模型拟合得很好,但请查看残差图plot(lm_y, which = 1)显然,残差未均匀分布在...,我们还可以利用中的 method = 参数来 geom_smooth指定模型公式。...在这个例子中,非常合适。“edf”是估计的自由度——本质上,数量越大,拟合模型就越摇摆。大约为1的值趋向于接近线性项。...点击标题查阅往期内容【视频】广义相加模型(GAM)在电力负荷预测中的应用分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测实现广义相加模型GAM和普通最小二乘(OLS)回归R语言非参数模型厘定保险费率

    2.3K20

    实现广义相加模型GAM和普通最小二乘(OLS)回归

    线性回归是一种使用X来预测变量Y的方法。将其应用于我们的数据将预测成红线的一组值: a+geom_smooth(col="red", method="lm")+ 这就是“直线方程式”。...我们在线的上方和下方都有正误差和负误差,因此,通过对它们进行平方并最小化“平方和”,使它们对于估计都为正。这称为“普通最小二乘法”或OLS。 3非线性关系如何?...4样条曲线 多项式的进一步细化是拟合“分段”多项式,我们在数据范围内将多项式链在一起以描述形状。“样条线”是分段多项式,以绘图员用来绘制曲线的工具命名。...下面是一个ggplot2 对象,该 对象的 geom_smooth 的公式包含ns 函数中的“自然三次样条” 。...一个很好的方法是在“结”点处将光滑曲线链接在一起,我们称之为“样条曲线” 我们可以在常规回归中使用这些样条曲线,但是如果我们在GAM的背景中使用它们,我们同时估计了回归模型以及如何使我们的模型更光滑。

    1.6K10

    R语言LME4混合效应模型研究教师的受欢迎程度

    本教程期望: 多级分析的基础知识 。 R中编码的基础知识。 安装R软件包  lme4,和  lmerTest。 ...现在我们可以为数据中的100个不同类别绘制不同的回归线 我们清楚地看到,外向性和受欢迎程度之间的关系在所有阶层中并不相同,但平均而言,存在明显的正向关系。...在本教程中,我们将显示这些不同斜率的估计值(以及如何解释这些差异)。  我们还可以对最极端的回归线进行颜色编码。 现在我们可以在人气数据上使用此功能。...然而,没有给出对随机效应的显着性检验,但是我们确实看到,可变性别的斜率的误差项(方差)估计很小(0.0024)。这可能意味着类别之间的SEX变量没有斜率变化,因此可以从下一次分析中删除随机斜率估计。...从这些结果中,我们现在还可以通过使用教师经验作为第二级变量来计算解释的外倾斜率方差:(0.03455-0.005409)/0.03455 = .843(这些结果与本书和HLM略有不同,即因为使用了不同的估算和舍入方法

    1.3K10

    数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据|附代码数据

    探索数据   ggplot(aes(x , y)) +   geom_smooth(method = "lm") 我们可以看到,留级的学生比例与学校平均社会经济地位的反对数呈负相关。...由于学校平均社会经济地位是一个连续的变量,我们可以将指数化的学校平均社会经济地位估计值标准化(通过将原始估计值与变量的SD相乘,然后将所得数字指数化)。...此外,即使是结果(即留级)和预测变量(如性别、学前教育、学校平均社会经济地位)之间的关系,在不同的学校也可能不同。还要注意的是,学校平均社会经济地位变量中存在缺失值。...在完整模型中,我们不仅包括性别、学前教育和学校平均社会经济地位的固定效应项和一个随机截距项,还包括性别和学前教育的随机斜率项。...点击标题查阅往期内容 R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例 非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究 生态学模拟对广义线性混合模型GLMM进行功率(功效、效能、效力

    1.5K00

    栾生老师 || 线性混合效应模型教程

    后者表示所有影响体重的不可测量的效应总和,是随机和不可控制的。 从数据中我们发现,一尾虾的体重还受它所在的测试池和所在家系的影响。因此,这两个效应也需要放到模型中。...首先看一下系数列表中的(Intercept) 项,估计值是34.376,是不是感觉很熟悉?它是Female体重的均值。在本文前边我们估计了雌雄体重的均值。...因为Female和Male均为因子变量,因此在x轴上可以将Female标准化为0,Male与Female的间距为1,二者体重差值为-6.2137345,那么斜线的斜率可以认为等于-6.213。...从系数列表中,针对雌性两个性别,给出了不同的回归系数。这主要是由于雌雄生长速度的差异造成的,后期雌虾生长速要快于雄虾。...下边代码中的(1|PopID:FamilyID),表示针对不同的家系,单独估计其随机截距(random intercept)。其中1表示随机截距。

    8.6K97

    R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类

    结果很好,我们在这里也有估计量的标准差 ? 标准逻辑回归glm函数: 当然,可以使用R内置函数 ?...如我们所见,此处定义的函数与之前的函数不同,但是在每个段(5,15)(15,25)和(25,55)。但是这些函数(两组函数)的线性组合将生成相同的空间。...(样本中的最小值和最大值),也为我们提供了三个中间结。...有趣的是,我们现在有两个“完美”的模型,白点和黑点的区域不同。 在R中,可以使用mgcv包来运行gam回归。...时间序列数据 R语言中实现广义相加模型GAM和普通最小二乘(OLS)回归 在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析 R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量

    1.6K20

    R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育调查数据

    探索数据 ggplot(aes(x , y)) + geom_smooth(method = "lm") 我们可以看到,留级的学生比例与学校平均社会经济地位的反对数呈负相关。...由于学校平均社会经济地位是一个连续的变量,我们可以将指数化的学校平均社会经济地位估计值标准化(通过将原始估计值与变量的SD相乘,然后将所得数字指数化)。...此外,即使是结果(即留级)和预测变量(如性别、学前教育、学校平均社会经济地位)之间的关系,在不同的学校也可能不同。还要注意的是,学校平均社会经济地位变量中存在缺失值。...由于上述观察结果,我们可以得出结论,在目前的数据中需要建立多层次的模型,不仅要有随机截距(学校),还可能要有性别和学前教育的随机斜率。...在完整模型中,我们不仅包括性别、学前教育和学校平均社会经济地位的固定效应项和一个随机截距项,还包括性别和学前教育的随机斜率项。

    9.8K30
    领券