1、R中重复值的处理 unique函数作用:把数据结构中,行相同的数据去除。...:unique,用于清洗数据中的重复值。...2、R中缺失值的处理 缺失值的产生 ①有些信息暂时无法获取 ②有些信息被遗漏或者错误处理了 缺失值的处理方式 ①数据补齐(例如用平均值填充) ②删除对应缺失值(如果数据量少的时候慎用) ③不处理 na.omit...<- na.omit(data) 3、R中空格值的处理 trim函数的作用:用于清除字符型数据前后的空格。...') 使用R.studio的小伙伴,在下载包很慢的的时候,可以使用R的官网站点,在中国地区会快很多,以解决此问题。
有一个序列表 seq,它有一个存整数序列值的字段叫作 id,原本序列的值是连续递增的,但因某些原因,有的值丢失了,我们希望能通过 SQL 找出缺失值的范围。...先来构造有缺失值的 seq 表,可以用 SQL 派生出这个表。...第一,把 seq 表中 id 字段的每个值 + 1 后再和 seq 表中的数比较,如果不在 seq 表中,说明该数 + 1 是缺失值,且是一段缺失值的范围的起始值。...比如对于缺失值 9,在 seq 表中能找到大于 9 的最小值是 12,12 - 1 = 11 就是该段缺失数据的范围的结束值。...ON s.id = r.id - 1 WHERE r.id IS NULL 下面是找到的结束值,因为 21 原本不存在,所以它的结束值是 NULL。
有时,解释缺失值出现的原因可能很简单,比如,可能是由于记录不全,各种意外等,但实现这一解释的过程可能并不简单,而且可能需要比开发探索性数据分析和模型所需的更多时间。...本次学习主要探讨3个问题: 开始探索缺失值 探索缺失值的机制 模型化缺失值 如何开始探索缺失值 当你面对新的数据时,可能首先会使用各种汇总函数查看数据的基本情况,比如: summary() str()...这幅图会直接把缺失值删掉,并不能知道缺失值的情况。...: gg_miss_upset(riskfactors) 使用NA替换缺失值 在一个数据中有很多缺失值用NA来表示可能会更加方便,比如N/A、N A,Not Available,-999等。...模型化缺失值 对缺失值建立模型!如果不学习这个R包,我是真的想不到还可以这样搞缺失值!
R语言中存在一些null-able values,当我们进行数据分析时,理解这些值是非常重要的。...通常来说,R语言中存在: NA NULL NaN Inf/-Inf 这四种数据类型在R中都有相应的函数用以判断。 NA NA即Not available,是一个长度为1的逻辑常数,通常代表缺失值。...缺失值NA的处理 理解完四种类型数值以后,我们来看看该采取什么方法来处理最常见的缺失值NA。 小白学统计在推文《有缺失值怎么办?系列之二:如何处理缺失值》里说“处理缺失值最好的方式是什么?...4 回归填补法 假定有身高和体重两个变量,要填补体重的缺失值,我们可以把体重作为因变量,建立体重对身高的回归方程,然后根据身高的非缺失值,预测体重的缺失值。..., Inf》 https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/ 小白学统计《有缺失值怎么办?
缺失值的发现和处理在我们进行临床数据分析的时候是非常重要的环节。今天给大家介绍一个包mice主要用来进行缺失值的发现与填充。同时结合VIM包进行缺失变量的可视化展示。...##查看数据缺失的模式md.pattern(nhanes) ? 还有另外一种描述展示: fluxplot(nhanes) ? 从上图我可以看出变量越往左上代表确实越少,越往右下代表缺失越严重。...接下来就是我们如何填充呢,缺失值填充函数mice中包含了很多的填充方法: ?...从图中我们可以看出各变量的缺失情况以及分布情况。如果想查看两个变量的情况时,还可以使用另外一种展示方式: marginplot(nhanes[,c(1,2)]) ?...图中橘黄色代表填充的点数据。当然还有一个impute包专门用来进行缺失值填充的,大家可以根据自己的需要进行选择,我是觉得有图有真相。
这部分是用指数平滑法做的时间序列的R语言实现,建议先看看指数平滑算法。...若要定义我们想要查看的最大滞后期数,可以定义acf()方法中的lag.max参数。 例如,计算滞后期在1-20时的样本预测误差的相关性,如下操作: ? ?...改时间序列预测的误差项平方和SSE结果是16954.18。 查看预测结果时间序列图: ? ? 上图可以看出,除了预测结果有很小的滞后外,预测值时间序列和实际值序列很接近。...alpha的值比较小,表明该时间序列的某一时间点的水平预测值,是基于近期观测值和远期观测值。beta为0,表明时间序列趋势部分值不随时间变化而改变的,也就是所有时间点上,趋势的预测值都是初始值。...同样的方法计算相关性和做Ljung-Box检验。过程及结果如下: ? ? 样本的预测误差的自相关结果,在1-20的滞后期中,没有超出意义界限。
在分析数据集时,常常会碰到一些缺失值,如果缺失值的数量相对总体来说非常小,那么直接删除缺失值就是一种可行的方法。但某些情况下,直接删除缺失值可能会损失一些有用信息,此时就需要寻找方法来补全缺失值。...今天小编给大家介绍一个用来处理缺失值的 R 包——MICE,本文为译文,原文链接[1]及参考文章[2]见文末。...数据处理 本文,我们将使用 R 自带的一个空气质量数据集airquality来估算缺失的值。为了介绍 mice 包的用法,先从数据集中删除一些数据点,制造一个缺失数据集。...左边的红箱显示了缺失 Ozone 的 Solar.R 的分布,蓝箱表示剩余数据点的分布。底部的红箱显示了缺失 Solar.R 的 Ozone 分布。...如果我们对数据是 MCAR 类型的假设是正确的,那么红箱和蓝箱将非常相似。 填补缺失值 这里用到的是 mice()函数,所需的主要参数如下: data:包含缺失值的数据框或矩阵。
---- 视频 缺失值的处理:线性回归模型插补 ---- 我们在这里模拟数据,然后根据模型生成数据。未定义将转换为NA。一般建议是将缺失值替换为-1,然后拟合未定义的模型。...默认情况下,R的策略是删除缺失值。...5%的缺失值,我们有 如果我们查看样本,尤其是未定义的点,则会观察到 缺失值是完全独立地随机选择的, x1=runif(n) plot(x1,y,col=clr) (此处缺失值的...这个想法是为未定义的缺失预测值预测。最简单的方法是创建一个线性模型,并根据非缺失值进行校准。然后在此新基础上估算模型。...5.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析 6.使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM 7.R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化
以下是我推荐的一些R语言时间序列分析的最佳实践:准备数据:确保数据按照时间顺序进行排序。检查并处理数据中的缺失值和异常值。...确定时间间隔(例如每日、每周、每月)并将数据转换为适当的时间序列对象(如xts或ts)。可视化数据:使用绘图工具(如ggplot2包)绘制时间序列的趋势图,以便直观地了解数据的整体情况。...拟合时间序列模型:根据数据的特征选择适当的时间序列模型,如ARIMA、GARCH等。使用模型拟合函数(如arima、auto.arima)对数据进行拟合,并估计模型的参数。...模型评估和选择:使用测试集对模型进行评估和验证,计算预测误差指标(如均方根误差、均方误差等)。比较不同模型的性能,选择表现最好的模型作为最终模型。预测未来值:使用拟合好的时间序列模型对未来值进行预测。...绘制预测结果的图表,并根据需要调整或改进模型。这些最佳实践可帮助您在R语言中进行时间序列分析时更加规范和有效地工作。
如果是要去除包含缺失值的行,直接使用na.omit()函数就可以了,但是如果要去除含有缺失值的列呢?...image.png 实现目的需要借助dplyr这个R包 用到的是select_if()函数 这个具体的写法怎么解释我暂时还没有搞明白,先背下来再说吧 dfpra library(dplyr) dfpra...这个代码是保留带有缺少值的列 ?...image.png 如果是要删除带有缺失值的列在any函数前加一个感叹号就可以了 dfpra<-data.frame(A=1:5, B=c(1:4,NA),...判断数据集是否至少存在一个数据满足指定的条件,返回值是TRUE或者FALSE 比如判断一组数据中是否存在负数 代码 x1<-c(1,2,3,4,5) any(x1<0) x2<-c(-1,2,3) any
来源:Deephub Imba本文约1700字,建议阅读9分钟本文为你介绍了医学时间序列数据研究的背景,并提出了3种专为rnn设计的缺失数据填补方法。...所以现在的RNN的输入是所有三个值编码的串联,即输入 x、缺失信号 m 和时间距离值 δ。公式 2 和图 2。...以下是时间距离的计算公式: 根据论文中提出的实验,该方法在缺失的显式编码之上带来了很好的改进,结果如下所示。 引入衰减 再次以上述方法为基础,同一篇论文提出了一种估算值的衰减机制。...第一步我们应用前向插补来使用最近的观察值但是如果缺失值的时间很长怎么办?我们应该无限期地使用那些旧的观察值吗?考虑一下现实世界的场景:医院工作人员停止跟踪指标,因为他们认为它已经稳定。...下图是衰减因子的计算公式: 在任意给定的时间步长t,如果x被观测到,我们使用x。否则,我们使用t′最后一次观测的值,衰减为x的均值。RNN的最终输入见公式4。
研究人员通常将时间序列数据划分为均匀的时间步长,例如 1 小时或 1 天。一个时间步长内的所有数据点将通过平均或其他聚合方案聚合。这种处理方式有两个优点。首先,它减少了时间序列数据序列的长度。...时间距离编码 在上述方法的基础上,除了显式编码缺失之外,这篇论文(https://www.nature.com/articles/s41598-018-24271-9)还建议显式编码一个值与最近观察到的值之间的时间距离...所以现在的RNN的输入是所有三个值编码的串联,即输入 x、缺失信号 m 和时间距离值 δ。公式 2 和图 2。...以下是时间距离的计算公式 根据论文中提出的实验,该方法在缺失的显式编码之上带来了很好的改进,结果如下所示 引入衰减 再次以上述方法为基础,同一篇论文提出了一种估算值的衰减机制。...下图是衰减因子得计算公式 在任意给定的时间步t,如果x被观测到,我们使用x。否则,我们使用t′最后一次观测的值,衰减为x的均值。RNN的最终输入见公式4。
,比如我们想要获得缺失值所在行呢?...其会返回一个矩阵,对应的缺失值会在对应位置返回一个TRUE,如果这时候通过which 获取,其只会返回一个坐标,这是因为数据框经过is.na 后返回一个矩阵,而矩阵的坐标关系和向量又非常的微妙,其本质也就是向量的不同的排列...如果你是个数学鬼才,可以计算一下,也就是所在坐标对行数取余,这个余就是NA所在的行数: > which(is.na(rcmat)) [1] 205214 > 205214%%70544 [1] 64126...我们都知道,布尔值实际就是0和1,我们可以利用这个特性,获得那些经过is.na 后,行和不是0 的行,那就代表其存在表示TRUE(NA)的数据了: > rcmat[!...非常贴心的将缺失值替换为其所在列的上一行数值的值: > fill(X,X1,X2) X1 X2 1 A 1 2 B 1 3 C 3 4 D 4 5 E 5 6 E 6 >
聚类分析大家应该不陌生,今天给大家介绍一个用于基于时间序列的转录组数据的聚类分析R包Mfuzz。...首先看下包的安装: BiocManager::install('Mfuzz') 接下来我们通过实例来看下包的使用: ##数据载入 data(yeast) ##缺失值的处理 yeast.r <-...filter.NA(yeast, thres=0.25) yeast.f r,mode="mean")#还可以是knn/wknn ##表达水平低或者波动小的数据处理...tmp <- filter.std(yeast.f,min.std=0) ##标准化数据 yeast.s <- standardise(yeast.f) ## m值评估 m1 <- mestimate...(yeast.s) ## 评估C聚类簇数 tmp <- Dmin(yeast.s,m=m1,crange=seq(4,40,4),repeats=3,visu=TRUE) 图中最小的值便是最优的簇数
知乎上关于时间数据的存储与计算的系列介绍....作者:木洛 主要包括: [1] - 时间序列数据的存储和计算 - 概述 - 2018.01.07 [2] - 时间序列数据的存储和计算 - 开源时序数据库解析(一) - 2018.01.07 [3] -...时间序列数据的存储和计算 - 开源时序数据库解析(二) - 2018.01.07 [4] - 时间序列数据的存储和计算 - 开源时序数据库解析(三) - 2018.01.07 [5] - 时间序列数据的存储和计算
p=18850 在本文中我们对在Google趋势上的关键字“ Chocolate ”序列进行预测。...在这里转换序列的对数序列。我们观察到趋势的变化(开始时是线性的,此后相对恒定)。...这是我们要建模的序列残差, residuals(trend) ? 要对该序列进行建模,我们可以先查看其自相关序列 > plot(acf(Y,lag=36),lwd=5) ?...和偏自相关序列 > plot(pacf(Y,lag=36),lwd=5) ? 该序列是稳定的,但是有很强的周期性成分。我们可以尝试AR模型或ARMA(带有AR的残差不是白噪声)。...我们的模型为红色,真实的观察结果为蓝色。然后,我们可以根据这24个观测值计算误差平方和。
有朋友问两个比值数据,怎么求他们的 p 值? 例如,两组人,分别接受两种药物治疗,想知道疗效之间是否有差异,计算 p 值。 接受药物 1 治疗,30 人,其中 20 人有疗效,10 人没有疗效。...直观上判断,药物 1 的疗效要好(20:10 vs 10:20),但与药物 2 的疗效相比,是否达到了显著性的差异了呢?...这种情况可以用 fisher 检验来探索,R 代码如下: fisher.test(matrix(c(20, 10, 10, 20), ncol = 2)) ## ## Fisher's Exact...另外判断差异时,不仅要看 p 值,还要看 OR 值,这里的 OR 值 = 3.901234,其 95 % 置信区间为 1.212812 - 13.467843,是有意义的。...OR 的置信区间不能跨过 1,否则 p 值再小也无意义。
) R中数据缺失值的处理--基于mice包 - 知乎 (zhihu.com)[2] 一种挽救你缺失数据的好方法——多重补插_处理 (sohu.com)[3] 没有完美的数据插补法,只有最适合的 - 知乎...(zhihu.com)[4] 前言 其实之前我也介绍过缺失值的处理:[[28-R数据整理03-缺失值NA的处理]]。...分为两种情况:缺失值取决于其假设值(例如,高收入人群通常不希望在调查中透露他们的收入);或者,缺失值取决于其他变量值(假设女性通常不想透露她们的年龄,则这里年龄变量缺失值受性别变量的影响)。...虚拟变量填补:把缺失值设定为一个新的变量,一般适用于分类数据统计。 均值/中位数/分位数填补:用存在缺失值的变量的已有值的均值/中位数/分位数,作为填补值。这种方法显然会导致方差偏小。...简单而言:该方法认为缺失值是随机的,它的值可以通过已观测到的值进行预测与插值。
生成器函数是一种特殊类型的函数,可以反复调用该函数以获得一系列值。...生成器函数可以通过返回值NULL来指示完成 。...首先,将先前读取的R数据帧转换为浮点值矩阵(我们丢弃包含文本时间戳记的第一列): data <- data.matrix(data[,-1]) 然后,您可以通过减去每个时间序列的平均值并除以标准差来预处理数据...您将使用前200,000个时间步作为训练数据,因此仅在这部分数据上计算均值和标准差以进行标准化。...RNN特别依赖于顺序或时间的:它们按顺序处理输入序列的时间步长,重新排列时间步长可以完全改变RNN从序列中提取的表示形式。这正是它们在序列问题(例如温度预测问题)上表现良好的原因。
领取专属 10元无门槛券
手把手带您无忧上云