/sparkR打开R shell之后,使用不了SparkR的函数 装在了 /usr/local/spark-1.4.0/ 下 [root@master sparkR]#....跑通的函数(持续更新中...) spark1.4.0的sparkR的思路:用spark从大数据集中抽取小数据(sparkR的DataFrame),然后到R里分析(DataFrame)。...这两个DataFrame是不同的,前者是分布式的,集群上的DF,R里的那些包都不能用;后者是单机版的DF,包里的函数都能用。...sparkR的开发计划,个人觉得是将目前包里的函数,迁移到sparkR的DataFrame里,这样就打开一片天地。...的数据框的函数createDataFrame > dfR中的数据框, df是sparkR的数据框,注意:使用sparkR
函数的用途 base包中的sweep函数是处理统计量的工具,一般可以结合apply()函数来使用。...函数的参数 sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...) x:即要处理的原数据集 MARGIN:对行或列,或者数列的其他维度进行操作...…… 下面我们结合几个具体的例子来看 #创建一个4行3列的矩阵 M = matrix( 1:12, ncol=3) 1.每一行都减去这一行的均值 #方法一,通过rowMeans函数来计算每一行的均值...sweep(M,1,rowMeans(M)) #方法二,通过apply函数来计算每一行的均值,MARGIN=1,对行做操作 sweep(M,1,apply(M,1,mean)) 2.每一行列都减去这一列的均值...#方法一,通过colMeans函数来计算每一列的均值 sweep(M,2,colMeans(M)) #方法二,通过apply函数来计算每一列的均值,MARGIN=2,对列做操作 sweep(M,2,
在Python 3.x中,内置函数print()用来实现格式化输出,各参数含义请参考本文末尾的相关阅读。本文重点介绍print()函数的end参数以及转义字符'\r'的妙用。...本文末尾的相关阅读中已经提到,end参数用来确定print()函数在输出全部内容之后以什么结束,默认是转义字符'\n',也就是换行符,在使用时可以根据需要修改这个参数的值,例如: ?...那么,如果把end参数设置为回车符'\r',会是什么样的效果呢?...下面的代码 from time import sleep for i in range(1000): print(i, end='\r') sleep(0.01) 运行效果如下面的视频所示:
Java 代码: public static void main(String[] args) { } Kotlin 代码: ...
公式函数用法 核心是什么 公式函数的优点在于提供了一种构造匿名函数的简洁方式。而核心在于在同一行代码表示如何使用输入构造出输出。...例如,~ .x + 2 代表直接在输入的基础在加 2,其等价于下面这个匿名函数: function(x) { return(x + 2) } 你应该瞬间明白了公式函数多么简洁。...基本用法 假设我们要对 df 中的 x 和 y 列进行归一化处理,在不使用 scale() 函数的情况下,我们可能会手写一个函数: scale2 <- function(x) { (x - mean...在公式中,我们可以直接使用前面已经定义的变量,这里是 cfs。...,它并不是必需的技能,直接构造函数在大部分情况下可读性更好,读者千万不要本末倒置。
R中gsub替换函数的参数如下 gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE,...vector举例如下: > x R Tutorial","PHP Tutorial", "HTML Tutorial") > gsub("Tutorial","Examples",x) #将...Tutorial替换成Examplers [1] "R Examples" "PHP Examples" "HTML Examples" 还有其他的一些例子来灵活使用这个函数,结合正则表达式。...,我们知道组织病理分期分成stage I,stage II,stage III和stage IV四个分期 接下来我们试着把组织病理分期从四个组合并成两个组,并转换成因子 我们使用gsub函数...,并转换成因子 我们还是使用gsub函数 #删除组织病理学分期末尾的A,B或者C等字母,例如Stage IIIA,Stage IIIB stage=gsub("[ABCD]$","",clin$ajcc_pathologic_stage
在想要运行的某个conda环境下特定的R版本 首先,安装jupyter conda install jupyter 打开这个环境下的R,并安装IRkernel install.packages('IRkernel...') 然后在R的命令行里激活 IRkernel::installspec() 打开jupyter,此时出现了R的选项,就可以用这个环境下的R了。...还可以通过jupyter代码框中运行.libPaths()查看是否是想要的R环境。....libPaths() Jupyter 还可以让你在同一个代码框,同时写python代码和R代码的方法——rpy2详情参考:在python中使用R—rpy2包学习 欢迎关注生信编程日常~
虚拟变量是什么 实际场景中,有很多现象不能单纯的进行定量描述,只能用例如“出现”“不出现”这样的形式进行描述,这种情况下就需要引入虚拟变量。...模型中引入了虚拟变量,虽然模型看似变的略显复杂,但实际上模型变的更具有可描述性。...需要注意的是,m种特征的因素,一般情况下只需引入m-1个虚拟变量,否则会出现局部多重共线性。...建模数据不符合假定怎么办 构建回归模型时,如果数据不符合假定,一般我首先考虑的是数据变换,如果无法找到合适的变换方式,则需要构建分段模型,即用虚拟变量表示模型中解释变量的不同区间,但分段点的划分还是要依赖经验的累积...我很少单独使回归模型 回归模型我很少单独使用,一般会配合逻辑回归使用,即常说的两步法建模。例如购物场景中,买与不买可以构建逻辑回归模型,至于买多少则需要构建普通回归模型了。
我们用R做数据处理的时候,经常要对数据的格式进行变换。例如将数据框(dataframe)转换成列表(list),或者反过来将列表转换成数据框。...那么今天小编就给大家介绍一对R函数来实现这样的功能。 这一对函数就叫做stack和unstack。从字面意思上来看就是堆叠和去堆叠,就像下面这张图展示的这样。...那么R里面这两个函数具体可以实现什么样的功能呢?下面这张图可以帮助大家来理解。unstack就是根据数据框的第二列的分组信息,将第一列的数据划分到各个组,是一个去堆叠的过程。...一、unstack 下面我们来看几个具体的例子 例如现在我们手上有一个数据框,里面的数据来自PlantGrowth 我们可以先看看PlantGrowth 中的内容,第一列是重量,第二列是不同的处理方式...,后面小编会使用这两个函数来给大家举个真实的应用案例,敬请期待。
在R中,expand.grid()函数可以返回几个元素所有可能的组合,使我们免于多层遍历的苦恼。...其实这个就是我们提供的sex,age,major中的变量分别组合起来得到的,类似于,遍历三层循环得到所有的排列组合。
在日常数据分析的过程中,我们经常需要在一个字符串或者字符串向量中查找是否包含我们要找的东西,或者向量中那几个元素包含我们要查找的内容。...这个时候我们会用到R中最常用的两个函数,grep和grepl。...其实grep这个函数也并非是R所特有的,在linux中模式匹配也用grep这个函数,前面我就给大家简单介绍过☞Linux xargs grep zgrep命令。...我们先来看看grep和grepl这两个函数的用法。 这两个函数最大的区别在于grep返回找到的位置,grepl返回是否包含要查找的内容。接下来我们结合具体的例子来讲解。...☞讨论学习R的grepl函数 参考资料: ☞Linux xargs grep zgrep命令 ☞讨论学习R的grepl函数
方案 在一个新的 R 会话中使用 search() 可以查看默认加载的包。...#> [19] "package:datasets" "package:methods" #> [21] "Autoloads" "package:base" 以下提供的函数能够列出包中的函数和对象...showPackageContents <- function(packageName) { # 获取特定包所有内容的列表 funlist 的东西 idx <- grep("<-", funlist) if (length(idx) !...qr.resid qr.solve qr.X quarters quarters.Date quarters.POSIXt quit R_system_version R.home R.Version
`TYPE_FLAG` = 1 或者 SUPPLIER_CLASS=1 实现有两种: 一、使用IF函数 SELECT temp.* FROM (SELECT tp1.
什么是SparkR 参考前文 打造大数据产品:Shiny的Spark之旅,我们可以知道,SparkR是一个为R提供了轻量级的Spark前端的R包。...SparkR提供了一个分布式的data frame数据结构,解决了 R中的data frame只能在单机中使用的瓶颈,它和R中的data frame 一样支持许多操作,比如select,filter,aggregate...(类似dplyr包中的功能)这很好的解决了R的大数据级瓶颈问题。 SparkR也支持分布式的机器学习算法,比如使用MLib机器学习库。...什么是Docker 参考前文 打造数据产品的快速原型:Shiny的Docker之旅,我们也可以知道,Docker是一种类似于虚拟机的技术,主要解决标准化快速部署的问题,在Docker中安装的软件和主机中的软件可以完全隔离...如果内存不足,可以退出docker并且在虚拟机中重新提高docker的内存和cpu的配置。 逻辑回归 模型评估
“一条鱼”就是题目中的那个问题本身:“UVM中怎么在sequence中调用agent中的函数”。这个问题很多同学猛的听到可能还是会有一些懵,反应不出一个优雅的解决方法。...但是“游离”在agent中的sequence怎么访问agent中的函数呢?...中的函数。...,基于这几个代码段,具体化为:“怎么在jerry_sequence中调用jerry_agent中的hi()函数?” 我们重点看下前面提到的“两步跳跃法”的功能实现: 1....终于,在40行,我们通过agt句柄,调用jerry_agent中的函数hi()。如果成功打印其中的字符串就说明我们实现了我们的目标。
一个函数在编译时被分配给一个入口地址,这个函数入口地址被称为函数的指针。可以用一个指针变量指向函数,然后通过该指针变量调用此函数。...一个函数可以带回一个整型值、字符值、实型值等,也可以带回指针型的数据,即地址。其概念与以前类似,只是带回的值的类型是指针类型而已。返回指针的函数简称为指针函数。...从函数中返回指针 当我们定义一个返回指针类型的函数时,形式如下: int *fun(参数列表) { ……; return p; } p是一个指针变量,它可以是形式如&value的地址值。...指针数组 数组中的元素均为指针变量的数组称为指针数组,一维指针数组的定义形式为: 类型名 *数组名 [数组长度]; 类如: int *p[4]; 指针数组中的数组名也是一个指针变量,该指针变量为指向指针的指针...指针数组中的元素可以使用指向指针的指针来引用。
前言 在sql中巧用窗口函数可以解决很多复杂的问题,窗口函数有4种函数类型:排名函数、偏移函数、聚合函数和分布函数,详细介绍可以浏览: 【窗口函数】第一弹:窗口函数简介 【窗口函数】第二弹:排名函数和偏移函数...【窗口函数】第三弹:聚合函数和分布函数 R语言中,也有与sql中一一对应的4种类型的窗口函数,除了聚合函数有点差异之外,其他3种类型的窗口函数完全一致,而且在R中使用管道函数书写窗口函数代码...同样得到与sql中相同的输出结果: ? 4 ntile函数 R语言中的ntile函数与sql中的ntile函数相同,把每一组分成几块,块数由参数n决定: ?...总结 简单介绍R语言中4个排名窗口函数,函数名几乎与sql中的4个排名窗口函数一样(除了min_rank与rank),但R语言的排名窗口函数的输出结果与sql中的输出结果有点不同:R语言的数据结果不改变原来的数据顺序...,而sql中的输出结果改变了原数据的顺序,若想得到与sql中一样的输出结果,在R中使用arrange对相应的字段进行排序即可。
函数语法 函数名<-function(parameters){ statemens return(expression)} printLine <- function () { print("---...-----------------------------------------"); } #函数的调用 printLine(); #错误:无参函数,有参调用 printLine("parameter...function (n) { for(i in 1:n) { print("--------------------------------------------"); } } #错误:有参函数...,实现了summary函数的加强版功能!...更多自编函数,参见Erin的自编函数整理,直接调用帮助你的数据分析工作事半功倍哦!
尤其是在R包中编程改变了从ggplot2引用函数的方式,以及在aes()和vars()中使用ggplot2的非标准求值的方式。...有时候在开发R包时为了保证正常运行,不得不将依赖包列入Depdens。...常规任务最佳实践 使用ggplot2可视化一个对象 ggplot2在包中通常用于可视化对象(例如,在一个plot()-风格的函数中)。.../ 234, "r" = 25 / 234 ), class = "discrete_distr" ) R中需要的类都有plot()方法,但想要依赖一个单一的plot()为你的每个用户都提供他们所需要的可视化需求是不现实的...如果没有,则会将主题对象存储在编译后的包的字节码中,而该字节码可能与安装的ggplot2不一致!
体现在使用过程中,我们可以在 Linux 中直接使用 mcapply 进行多线程操作,但是在 Windows 中,我们必须提前创建 worker,然后再初始化,然后才能调用多线程函数。...原来就捉襟见肘的内存和硬盘,开了虚拟机后可能就没多少留给 R 了(别忘了 R 和 Python 需要把所有数据都加载到内存中!)...本来我们期望的是 Linux 中的 R 能带来更好的并行运算效率,但是虚拟机不光吃掉了 Linux 带来的效率优势,性能更可能还不如在 Windows 版本。 虚拟机访问宿主系统资源比较麻烦。...背后的原因在于,虚拟机对于宿主系统来说是个外来者,因此虚拟机中的系统想要访问 Internet 或者宿主系统中的文件,就必须使用某种技巧“在宿主系统的防火墙中打一个洞”。...完 结撒花 经历了那么多,现在我们终于可以自豪的宣布:老纸在 Windows 中不依赖虚拟机就搭建了一个 R 和 Python 的 Linux-Jupyter 服务器!
领取专属 10元无门槛券
手把手带您无忧上云