首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Google的AI平台笔记本开始支援R语言

导读 用户在创建笔记本时,就能选择加入R语言支援,也可以在R控制台中安装各式函式库 ?...Google在今年Next大会中发布了一系列支援机器学习生命周期各阶段的工具,其中包括了AI平台笔记本,这是一个代管服务,供使用者以最新的资料科学与机器学习开发框架,创建JupyterLab执行个体服务...,现在Google宣布在AI平台笔记本支援R语言。...而Google在其AI平台笔记本支援R语言,用户可以启动网页开发环境,并预安装JupyterLab、IRkernel、xgboost、ggplot2、caret、rpy2以及其他热门的R函式库,而且AI...用户可以在Google的AI平台点选笔记本选项,并且在创建新的执行个体时选择R 3.5.3,就能在AI平台笔记本中使用R语言,用户还可以使用CRAN套件托管服务在R控制台中,安装各种R函式库。

68140

Cell 综述精读 | 细胞中的染色体折叠

就像蛋白质折叠问题被定义为蛋白质的一级氨基酸序列如何决定其三维折叠的问题一样,染色体折叠问题可以定义为线性表观基因组如何与细胞中染色体的空间排列和折叠相关的问题。...:空间分离 R(s) ∼ sv。...令人惊讶的是,大多数动物细胞的研究也报告了 μ= 0.5,这很难与 P(s) 和 R(s) 以及预期给出 μ= 0.2–0.4 的分形球模型相协调(参见 Tamm 和 Polovnikov 的综述)。...当使用相同的方法在同一细胞中测量这两个特征时,皱缩的 R(s) 与不受限制的 MSD 之间的这种不一致变得尤为明显(参见 Grosse-Holz 和 Brückner 的综述)。...在果蝇中,凝聚素II在间期参与染色体折叠,而在秀丽隐杆线虫中,凝聚素I有助于间期基因组的折叠。 在芽殖酵母中,黏连蛋白在有丝分裂期间形成环路。

13910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【R语言】R中的因子(factor)

    R中的因子用于存储不同类别的数据,可以用来对数据进行分组,例如人的性别有男和女两个类别,根据年龄可以将人分为未成年人和成年人,考试成绩可以分为优,良,中,差。...R 语言创建因子使用 factor() 函数,向量作为输入参数。...levels:指定各水平值, 不指定时由x的不同值来求得。 labels:水平的标签, 不指定时用各水平值的对应字符串。 exclude:排除的字符。 ordered:逻辑值,用于指定水平是否有序。...这个顺序也是有讲究的,一般是按字母顺序来排列。我们也可以按照自己的需要来排列因子的顺序。...关于这个参数后面我们还会给大家举个更实际的,跟临床数据相关的例子。 R中的因子使用还是更广泛的,例如做差异表达分析的时候我们可以根据因子将数据分成两组。

    3.4K30

    Nteract:可以在桌面运行的Jupyter笔记本(安装R+Julia+Python)

    这里的话,R-stdio也安装一下 https://cran.r-project.org/bin/windows/base/ R的执行文件 如果你安装完成以后就是这样的 点运行,我们默认可以看到是启动了...日志 IRkernel::installspec() 执行 IRkernel::installspec(user = FALSE) 执行 在R里面运行一下这两条命令 在CMD里面运行一下笔记本...可以看到已经安装好了 install.packages('ggplot2') 先安装一下R中久负盛名的ggplot2包 library(ggplot2) 然后这里导入 qplot(wt, mpg...Julia nteract") julia也是生效的 https://jupyter.readthedocs.io/en/latest/ Jupyter笔记本的文档 https://julialang.github.io.../IJulia.jl/dev/manual/installation/ julia的内核的笔记本 https://docs.rstudio.com/ R-Stdio的文档 大家可以参考的学习

    2K20

    「R」R 中的方差分析ANOVA

    因此回归分析章节中提到的lm()函数也能分析ANOVA模型。不过,在这个章节中,我们基本使用aov()函数。最后,会提供了个lm()函数的例子。...R默认类型I(序贯型)方法计算ANOVA效应(类型II和III分别为分层和边界型,详见R实战(第2版)202页)。...R中的ANOVA表的结果将评价: A对y的影响 控制A时,B对y的影响 控制A和B的主效应时,A与B的交互影响。 一般来说,越基础性的效应需要放在表达式前面。...单因素方差分析 单因素方法分析中,你感兴趣的是比较分类因子定义的两个或多个组别中的因变量均值。...glht.png par语句增大了顶部边界面积,cld()函数中的level选项设置了使用的显著水平。 有相同的字母的组说明均值差异不显著。

    4.7K21

    R tips: R中的颜色配置方案

    数据可视化不可避免的就是要选择一些颜色方案,颜色方案除了手动设置之外,在R中也有自动生成颜色方案的工具。...R中的HCL配色方案 HCL本意是和RGB HSV等一样的颜色空间的术语,由于这里所用的颜色方案在R中是hcl.pals函数,所以就称为HCL配色方案了。...HCL相比较HSV等颜色空间的一个重要优点就是颜色的视觉明度是均一的,在R中也是推荐使用hcl颜色方案,不推荐使用rainbow等颜色方案了。...,常用于着色离散变量; sequential的颜色方案中色调较少,体现了颜色的连续过渡,可以用于着色连续变量; diverging和divergingx也是颜色的连续过渡,但是不同于sequential...") # [1] "#1B9E77" "#D95F02" "#7570B3" 不同于hcl的配色方案,RColorBrewer中颜色方案数量是固定的,不会对颜色进行自动插值,比如Dark2配色一共只有

    3.8K40

    R中的sweep函数

    函数的用途 base包中的sweep函数是处理统计量的工具,一般可以结合apply()函数来使用。...当我们我们需要将apply()统计出来的统计量代回原数据集去做相应操作的时候就可以用到sweep()。...函数的参数 sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...) x:即要处理的原数据集 MARGIN:对行或列,或者数列的其他维度进行操作...,与apply的用法一样 STATS:需要对原数据集操作用到的统计量 FUN:操作需要用到的四则运算,默认为减法"-",当然也可以修改成"+","*","/",即加、乘、除 check.margin:是否需要检查维度是否适宜的问题...…… 下面我们结合几个具体的例子来看 #创建一个4行3列的矩阵 M = matrix( 1:12, ncol=3) 1.每一行都减去这一行的均值 #方法一,通过rowMeans函数来计算每一行的均值

    2.7K20

    装在笔记本里的私有云环境:网络存储篇(中)

    本篇是系列中的第四篇内容,我们继续聊聊如何把一个简化过的私有云环境部署在笔记本里,以满足低成本、低功耗、低延时的实验环境。...在前三篇文章中,我们聊过了基础虚拟化相关的前置准备、以及为了避免在搭建过程中盲人摸象,而准备的监控服务,还有上一篇基础存储服务的搭建。...MinIO 官方提供的 Grafana 面板 参考监控篇中的“Grafana 控制面板导入”方式,将编号“13502”的面板导入 Grafana 中,就可以看到下面的监控面板界面了。...将这个 JSON 配置中的所有内容复制,然后使用 Grafana 导入配置的方式,在导入配置的文本框中粘贴进去上面的内容,Syncthing 的监控面板就搞定了。...NextCloud 监控面板 最后 在写“装在笔记本里的私有云环境”这个系列的内容时,稍不注意文章字数(包含代码)就会超过各种平台允许最大字数,所以不得已将本篇文章进行了分拆。

    2.1K40

    「R」R检验中的“数据是恆量”问题

    之前我学习和自己分析时就遇到过,尝试使用判断的方式事先检查它是不是数据存在问题(这类数据明显不服从正态分布),可以使用正态性检验,或者直接判断是不是样本组内的数据是完全一样的,如果一样就不要这个了。...所遇到的问题: 分析两个样本之间是否存在差异,每个样本三个重复。现在用的是t.test,但有些样本三个重复的值一样(比如有0,0,0或者2,2,2之类的),想问下像这种数据应该用什么检验方法呢?...以下是我的回答: 数据是恒量是无法做t检验的,因为计算公式分母为0(不懂的看下统计量t的计算公式,一般标准差/标准误为分母,所以恒量是不能算的)。...,如果一样,则输出原始的结果,再筛选其中差异大的基因 。...9508518/why-are-these-numbers-not-equal https://stackoverflow.com/questions/23093095/t-test-failed-in-r

    4.8K10

    R中的线性回归分析

    回归分析(regression analysis) 回归分析是研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量Y与影响它的自变量Xi(i=1,2,3...)之间的回归模型,来预测因变量Y...的发展趋势。...简单线性回归模型 Y=a+b*X+e Y——因变量 X——自变量 a——常数项,是回归直线在纵轴上的截距 b——回归系数,是回归直线的斜率 e——随机误差,即随机因素对因变量所产生的影响...回归分析函数 lm(formula) formula:回归表达式y~x+1 lm类型的回归结果,一般使用summary函数进行查看 预测函数 predic(lmModel,predictData...,level=置信度) 参数说明: lmModel:回归分析得到的模型 predictData:需要预测的值 level:置信度 返回值:预测结果 data <- read.table('data.csv

    1.6K100
    领券