首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

RDKIT:查找子结构Atom坐标

RDKIT是一个开源的化学信息学软件包,用于分子建模和药物发现领域。它提供了丰富的功能和工具,可以进行分子结构的表示、转换、分析和可视化。

在RDKIT中,查找子结构Atom坐标是指在一个分子结构中查找特定子结构的原子坐标。子结构是指由一组原子和它们之间的化学键组成的结构片段。通过查找子结构Atom坐标,可以确定子结构在整个分子中的位置,并进一步进行分析和处理。

RDKIT提供了多种方法来查找子结构Atom坐标,其中包括基于SMARTS模式匹配的方法。SMARTS是一种用于描述化学结构模式的语言,可以通过指定原子类型、键类型和拓扑关系等信息来匹配目标子结构。通过使用RDKIT提供的SMARTS模式匹配功能,可以快速准确地查找子结构Atom坐标。

在云计算领域,RDKIT可以应用于药物发现、化学信息学和分子模拟等方面。例如,在药物发现中,可以使用RDKIT来分析和处理大量的化合物库,筛选潜在的药物候选物。此外,RDKIT还可以用于药物分子的属性预测、药物相互作用的预测和药物分子的可视化等任务。

腾讯云提供了一系列与化学信息学相关的产品和服务,可以与RDKIT结合使用。例如,腾讯云的分子数据库服务可以存储和管理大规模的化合物库数据,提供高效的数据检索和分析功能。此外,腾讯云还提供了云计算资源和虚拟化技术,可以支持RDKIT在云端进行大规模计算和模拟。

更多关于腾讯云相关产品和服务的介绍,请访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Nat. Methods | MSNovelist:从质谱生成小分子结构的新方法

    今天给大家介绍来自苏黎世联邦理工学院和耶拿弗里德里希-席勒-耶拿大学团队发表在Nature Methods上的文章,文章提出了一种基于encoder-decoder神经网络的从质谱生成小分子结构的新方法:MSNovelist,它首先使用SIRIUS和CSI:FingerID来分别从质谱中预测出分子的指纹和表达式,然后将其输入到一个基于encoder-decoder的RNN模型来生成分子的SMILES。作者使用来自Global Natural Product Social Molecular Networking网站上的3863个质谱数据集进行评估,MSNovelist重现出了61%的分子结构,这些重现的分子结构都是未在训练集中见过的;并且使用CASMI2016数据集进行了评估,MSNovelist重现了64%的分子结构。最后,本文将MSNovelist应用在苔藓植物质谱数据集上进行验证,结果表明MSNovelist非常适合在分析物类别和新化合物表现不佳的情况下注释质谱对应的分子。

    03

    ICML2022 | EQUIBIND:用于药物结合结构预测的几何深度学习方法

    本文介绍一篇来自于麻省理工学院的Hannes Stärk、Octavian Ganea等人发表在ICML上的分子结构预测工作——《EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction》。预测类药物分子如何和特定靶蛋白结合是药物发现中的一个核心问题。已有方法依赖于评分、排序和微调等步骤对大量候选分子进行采样,计算非常昂贵。针对该问题,作者提出一种SE(3)等变的几何深度学习模型——EQUIBIND。该模型能直接快速地预测出受体结合位置以及配体的结合姿势和朝向。此外,作者将该模型同已有的微调技巧结合取得额外突破。最后,作者提出一种新型且快速的微调模型,它对于给定的输入原子点云基于冯·米塞斯角距离全局最小值的近似形式来调整配体可旋转键的扭转角,避免以前昂贵的差分进化能源最小化策略。

    02

    MIMOSA: 用于分子优化的多约束分子采样

    今天给大家介绍一篇佐治亚理工学院Tianfan Fu等人发表在AAAI 2021上的文章“MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization”。分子优化促进药物发现,其目标是产生新的有效分子,使药物特性最大化,同时保持与输入分子的相似性。现有的生成模型和强化学习方法在同时优化多种药物属性方面仍面临一定困难。为此,本文提出多约束分子采样框架—MIMOSA,使用输入分子作为初始采样框架,并从目标分布中采样分子。MIMOSA首先预先训练两个属性不可知图神经网络(GNN),分别用于分子拓扑和子结构类型预测,其中子结构可以是原子或单环。MIMOSA用GNN进行迭代预测,并且采用三种基本的子结构操作(添加、替换、删除)来生成新的分子和相关的权重。权重可以编码多个约束,包括相似性约束和药物属性约束,在此基础上选择有前途的分子进行下一次预测。MIMOSA能够灵活地对多种属性和相似性约束进行编码,且高效地生成满足各种属性约束的新分子,在成功率方面比最佳基线改进高达49.6%。

    04

    ONIOM计算(一):简介

    ONIOM(our Own N-layer Integrated molecular Orbital molecular Mechanics)方法是由已故量子化学家Keiji Morokuma等人提出的一种用于大体系计算的杂化方法,它可以对体系的不同部分用不同的计算级别处理,例如对化学上比较关心的成键、断键区域用较高水平的计算方法,对周围环境用较低水平的方法。如果两者分别为量子力学QM和分子力学MM方法,这时候就是一种QM/MM方法。当然,在ONIOM方法中,可以是任意的方法的组合,两层可以都是QM方法。原理上来说,ONIOM方法可以将体系分成n层,而实际计算中一般将体系分成2层或3层。以下我们以两层ONIOM(记为ONIOM2)方法为例,简单说明ONIOM方法的原理,关于三层ONIOM以及更详细的方法原理可参看相关文献,如DOI: 10.1002/wcms.85

    03
    领券